• Title/Summary/Keyword: Non-rigidity

Search Result 105, Processing Time 0.026 seconds

Strengthening of the panel zone in steel moment-resisting frames

  • Abedini, Masoud;Raman, Sudharshan N.;Mutalib, Azrul A.;Akhlaghi, Ebrahim
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2019
  • Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.

The characteristics of the multi-span suspension bridge with double main cables in the vertical plane

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Jiang, Yang;Chai, Sheng-Bo
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.291-311
    • /
    • 2012
  • The multi-span suspension bridge having double main cables in the vertical plane is investigated regarding endurance of live load distribution in the case of non-displaced pylon and pylon displacement. The coefficient formula of live load distribution described as the ratio of live load on the bottom cable to the top cable is obtained. Based on this formula, some function in respect of this bridge are derived and used to analyze its characteristics. This analysis targets the cable force, the cable sag and the horizontal displacement at the pylon top under live load etc. The results clarified that the performance of the live load distribution and the horizontal force of cables in the case of non-deformed pylon has a similar tendency to those in the case of deformed pylon, and the increase of pylon rigidity can increase live load distributed to the bottom cable and slightly raise the cable horizontal force under live load. However, effect on the vertical rigidity of bridge and the horizontal force increment of cables caused by live load is different in the case of non-deformed pylon and deformed pylon.

A Study on Design Methods and the Composition Elements in Flexure Structure Systems (휨 구조시스템의 구조디자인적 구성요소와 디자인 조합 수법 분석)

  • Lee, Juna
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.73-84
    • /
    • 2016
  • This study analyzes the four composition elements : profile, anchorage and connection, material and member rigidity, stability, as the main composition design elements of flexure structure systems, in order to explore possibilities for more various structure designs in architectures with flexure structure system. It also examines typical design methods that use the mentioned four composition elements. At the results, this research presents an understanding of the differences between funicular shape and non-funicular shape and mechanical features of the shapes in the profile element, regarding to the ratio of rise height to span length(f/l). Also, the typical design methods are presented for the designable usages of the hinge joints and the fix joints, and for the applications of member rigidity expressed by the index of the ratio of member depth to span length(d/l). And it was presented that connection styles, addition of brace members, placement of shear walls are the main design methods in the stability element. This data would be useful to architectural designs concerning integrated design with structures.

Study on the Rigidity of the Solid-HDDR Treated Nd-Fe-B-type Materials

  • Kang, S.J.;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.9-14
    • /
    • 1998
  • A non-coercive cast Nd-Fe-B-type material can be easily converted into a coercive one by employing HDDR process. Applying the conventional HDDR process to the Nd-Fe-B-type material generally leads to a powder-like material. HDDR treated material in a solid form can, however, be realised if the process is properly modified (solid-HDDR). In the present study, the change of rigidity (compressive strength) of the Nd-Fe-B-type material during the solid-HDDR has been investigated using a homogeneous sintered magnet with composition $Nd_{13.8}Dy_{0.7}Fe_{78.25}Si_{0.15}Mn_{0.6}B_{6.5}.$ It has been found that the low strength of the hydrided material was improved by the subsequent disproportionation. The restoration of the strength was explained by the eutectoid-like disproportionation structure containing fine neodymium hydride rod embedded in tough iron matrix. The high strength of disproportionated material was reduced radically in earlier stage of recombination, and this wes explained by the reduction of the disproportionated phase. The reduced strength was, however, recovered by further recombination, and this was explained by the fact that as the recombination continues the recombined grains adhere together. The optimally HDDR processed material has a comparable or even higher strength with respect to the initial sintered material prior to the solid-HDDR. The present study suggested that the rigidity of Nd-Fe-B-type material could be retained even after the solid-HDDR.

  • PDF

Lateral Bearing Characteristics of Large Diameter Drilled Shafts by Casing Reinforcement Condition Using Non Linear Analysis (비선형해석을 이용한 케이싱 보강조건에 따른 대구경 현장타설말뚝의 수평거동특성)

  • Yoo, Jin-Ho;Moon, In-Jong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.23-33
    • /
    • 2020
  • The lateral bearing characteristics are important factors in the case of large diameter drilled shafts and the measures to increase this are to improve the adjacent ground of the pile to increase the rigidity and to increase the rigidity of the pile itself. There are many suggestions for increasing rigidity by reinforcing casing on the pile, but few studies have been done related to this. Therefore, in this study, the lateral bearing characteristics according to casing reinforcement length were studied for each ground condition using non-linear analysis to evaluate the appropriate casing reinforcement length of the large diameter drilled shafts depending on the ground conditions. As a result, the lateral bearing characteristics of the large diameter drilled shafts are most effective if the casing reinforcement length ratio is 1.2, and depending on the ground conditions, the more loose the ground, the greater the reinforcement effect.

DETERMINATION OF THE FLEXURAL RIGIDITY OF A BEAM FROM LIMITED BOUNDARY MEASUREMENTS

  • LESNIC DANIEL
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.17-34
    • /
    • 2006
  • Inverse coefficient identification problems associated with the fourth-order Sturm-Liouville operator in the steady state Euler-Bernoulli beam equation are investigated. Unlike previous studies in which spectral data are used as additional information, in this paper only boundary information is used, hence non-destructive tests can be employed in practical applications.

Effect of vehicle flexibility on the vibratory response of bridge

  • Lalthlamuana, R.;Talukdar, Sudip
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • In the recent times, dimensions of heavy load carrying vehicle have changed significantly incorporating structural flexibility in vehicle body. The present paper outlines a procedure for the estimation of bridge response statistics considering structural bending modes of the vehicle. Bridge deck roughness has been considered to be non homogeneous random process in space. Influence of pre cambering of bridge surface and settlement of approach slab on the dynamic behavior of the bridge has been studied. A parametric study considering vehicle axle spacing, mass, speed, vehicle flexibility, deck unevenness and eccentricity of vehicle path have been conducted. Dynamic amplification factor (DAF) of the bridge response has been obtained for several of combination of bridge-vehicle parameters. The present study reveals that flexible modes of vehicle can reduce dynamic response of the bridge to the extent of 30-37% of that caused by rigid vehicle model. However, sudden change in the bridge surface profile leads to significant amount of increment in the bridge dynamic response even if flexible bending modes remain active. The eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.

Control of the Eccentric Building Using a TMD with Torsional Rigidity (비틀림 강성을 가지는 동조질량감쇠기를 이용한 편심건물의 제어)

  • Park, Yong-Koo;Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.2
    • /
    • pp.65-72
    • /
    • 2012
  • In this stury, control performance of tuned mass damper (TMD) with torsional rigidity for an eccentric structure showing torsional responses is investigated. To this end, an eccentric structure subjected to earthquake excitation is used to evaluate the control performance of torsional TMD by varying installed location and torsional rigidity of TMD, To reduce computational time required for repetitive time history analysis of an example structure having non-proportional damping system due to TMD, an equivalent analytical model is used in this study. Torsional properties of TMD usually neglected in typical TMD are verified to be effective in reduction of torsional responses of the eccentric structure. In the case of eccentric structures, it has been seen that the center of a plane of a structure may not be optimal location of TMD.

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal;Yilmaz, Murat;Darilmaz, Kutlu;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.221-238
    • /
    • 2016
  • One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

RIGIDITY THEOREMS OF SOME DUALLY FLAT FINSLER METRICS AND ITS APPLICATIONS

  • Shen, Bin;Tian, Yanfang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1457-1469
    • /
    • 2016
  • In this paper, we study a class of Finsler metric. First, we find some rigidity results of the dually flat (${\alpha}$, ${\beta}$)-metric where the underline Riemannian metric ${\alpha}$ satisfies nonnegative curvature properties. We give a new geometric approach of the Monge-$Amp{\acute{e}}re$ type equation on $R^n$ by using those results. We also get the non-existence of the compact globally dually flat Riemannian manifold.