Browse > Article
http://dx.doi.org/10.12989/sem.2012.42.3.291

The characteristics of the multi-span suspension bridge with double main cables in the vertical plane  

Zhang, Li-Wen (Department of bridge Engineering, Tongji University)
Xiao, Ru-Cheng (Department of bridge Engineering, Tongji University)
Jiang, Yang (Department of bridge Engineering, Tongji University)
Chai, Sheng-Bo (Department of bridge Engineering, Tongji University)
Publication Information
Structural Engineering and Mechanics / v.42, no.3, 2012 , pp. 291-311 More about this Journal
Abstract
The multi-span suspension bridge having double main cables in the vertical plane is investigated regarding endurance of live load distribution in the case of non-displaced pylon and pylon displacement. The coefficient formula of live load distribution described as the ratio of live load on the bottom cable to the top cable is obtained. Based on this formula, some function in respect of this bridge are derived and used to analyze its characteristics. This analysis targets the cable force, the cable sag and the horizontal displacement at the pylon top under live load etc. The results clarified that the performance of the live load distribution and the horizontal force of cables in the case of non-deformed pylon has a similar tendency to those in the case of deformed pylon, and the increase of pylon rigidity can increase live load distributed to the bottom cable and slightly raise the cable horizontal force under live load. However, effect on the vertical rigidity of bridge and the horizontal force increment of cables caused by live load is different in the case of non-deformed pylon and deformed pylon.
Keywords
suspension bridge; double main cables; coefficient of live load distribution; cable sag;
Citations & Related Records
연도 인용수 순위
1 Choi, D.H., Na, H.S., Gwon, S.G., Yoo, D.H. and Moon, C. (2010), "A parametric study on the ultimate behaviors of multi-span suspension bridges", Proceedings of 34th International Symposium on Bridge and Structural Engineering, Venice, September.
2 Ge, Y.J. and Xiang, H.F. (2006), "Tomorrow's challenge in bridge span length", Proceedings of IABSE Symposium on Responding to Tomorrow's Challenges in Structural Engineering, Budapest, September.
3 Ge, Y.J. and Xiang, H.F. (2011), "Extension of bridging capacity of cable-supported bridges using double main spans or twin parallel decks solutions", Struct. Infras. Eng., 7(7-8), 551-567.   DOI   ScienceOn
4 Giming, N.J. (1997), Cable Supported Bridges-Concept & Design, Willey, New York.
5 Ito, M. (1996), "Cable-supported steel bridges: design problems and solutions", J. Constr. Steel. Res., 39(1), 69-84.   DOI   ScienceOn
6 Jung, J., Kim, J., Baek, J. and Choi, H. (2010), "Practical design of continuous two main-span suspension bridge in Korea", Proceedings of 34th International Symposium on Bridge and Structural Engineering, Venice, September.
7 Kitagawa, M., Kashima, N., Fukunaga, S. and Anzar, M.A.C.M. (2001), "Stability studies of ultra-long four span suspension bridge", Proceedings of IABSE Conference on Cable-supported Bridges, Seoul, August.
8 Luo, X.Y., Wang, D.L. and Chen, A.R. (2011), "The landscape design and form finding study of Taizhou Yangtze river highway bridge", Proceedings of International Conference on Electric Technology & Civil Engineering, Wuhan, China.
9 Nazir, C.P. (1986), "Multispan balanced suspension bridge", J. Struct. Eng., 112(11), 2512-2527.   DOI   ScienceOn
10 Ohshima, H., Sato, K. and Watanable, N. (1984), "Structural analysis of suspension bridges", J. Bridge Eng., 110(3), 392-404.
11 Tan, Y.G., Gong, F. and Zhang, Z. (2009), "Analytical method for main cable configuration of two-span selfanchored suspension bridges", Struct. Eng. Mech., 32(5), 701-704.   DOI
12 Torben, F. (2001), "Multi-span Suspension Bridges", Steel Struct., 1, 63-73.
13 Yoshida, O., Okuda, M. and Moriya, T. (2004), "Structural characteristics and applicability of four-span suspension bridge", J. Bridge. Eng., 9(5), 453-463.   DOI
14 Zhang, X.J. (2010), "Study of structural parameters on the aerodynamic stability of three-tower suspension bridge", Wind Struct., 13(5), 471-485.   DOI
15 Zhang, L.W., Xiao, R.C. and Xia, R.J. (2011a), "Mechanical analysis and study on structural parameter of partially earth-anchored cable-stayed bridge part one: mechanical analysis", Appl. Mech. Mater., 44-47, 1898-1905.
16 Zhang, L.W., Xiao, R.C. and Xia, R.J. (2011b), "Mechanical analysis and study on structural parameter of partially earth-anchored cable-stayed bridge part two: parametric study", Appl. Mech. Mater., 44-47, 1906-1912.
17 Zhang, L.W. and Xia, R.J. (2011c), "The reasonable finished dead state research of partially earth-anchored cable-stayed bridge", Adv. Mater. Res., 255-260, 1319-1325.   DOI
18 Zhang, W.M., Ge, Y.J. and Levitan, M.L. (2011), "Aerodynamic flutter analysis of a new suspension bridge with double main spans", Wind Struct., 14(3), 187-208.   DOI