• Title/Summary/Keyword: Non-proliferation

Search Result 738, Processing Time 0.024 seconds

The Feasibility of Cathepsin B Level in Preoperatively Screening Patients with Thyroid Cancer and Nodular Hyperplasia (갑상선암 및 결절성 증식증 환자의 수술전 스크리닝을 위한 cathepsin B의 발현 양상)

  • Choi, Young-Sik;Kim, Young-Ok;Kim, Woo-Mi
    • Journal of Life Science
    • /
    • v.19 no.11
    • /
    • pp.1514-1521
    • /
    • 2009
  • To evaluate the feasibility of cathepsin-B levels in preoperatively screening patients with thyroid cancer, we assigned these patients to either the thyroid cancer group (n=32) or the nodular hyperplasia group (n=7). Five healthy volunteers served as controls (n=5). We quantified cathepsin-B expressions in cancerous lesions with follicular carcinoma and hyperplastic lesions with nodular hyperplasia, and compared the degrees to those of normal thyroid tissue, which was obtained from matched contralateral lobe. The activity of serum cathepsin B was significantly higher in patients with thyroid carcinoma ($284.87{\pm}79.32$, ${\times}10^{-2}\;mU$) and those with nodular hyperplasia ($255.45{\pm}95.68$, ${\times}10^{-2}\;mU$) than compared to normal control ($168.94{\pm}15.10$, ${\times}10^{-2}\;mU$) (p<0.05). Based on the results of immunoassay, the concentrations of cathepsin B in the thyroid cancer group ($15.50{\pm}7.86\;ng/ml$) and the nodular hyperplasia group ($17.64{\pm}7.49\;ng/ml$) were higher than those of the control group ($4.85{\pm}0.61\;ng/ml$). The degree of cathepsin-B mRNA expression was significantly higher in cancerous or hyperplastic lesions than normal thyroid tissues from matched contralateral lobe with follicular carcinoma or non-neoplastic thyroid disease. Our results indicate that the activity of serum cathepsin B is a useful indicator in screening patients with nodular hyperplasia or neoplastic thyroid disease and it may be involved in the abnormal proliferation of cells.

TWO COLORIMETRIC ASSAYS VERIFY THAT CALCIUM SULFATE PROMOTES PROLIFERATING ACTIVITY OF HUMAN GINGIVAL FIBROBLASTS

  • Chae, Min;Kim, Su-Yeon;Kim, Soo-Yeon;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.382-388
    • /
    • 2007
  • Statement of problem. The role of calcium sulfate in stimulating the growth of gingival soft tissue has been reported in few studies. Such a unique property of calcium sulfate could serve as a trouble-solving broker in compensating for the lack of soft tissues in various oral surgeries. Purpose. The purpose of this study was to compare the proliferating activities of human gingival fibroblasts seeded on various bone graft barrier materials of calcium sulfate, collagen, and polytetrafluorethylene (PTFE). Material and methods. Two calcium sulfates ($CAPSET^{(R)}$. and $CalForma^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA), a resorbable natural collagen ($Bio-Gide^{(R)}$, Geistlich Pharma Ag., Wolhusen, Switzerland), and a non-resorbable PTFE ($TefGen-FD^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA) served as the human gingival fibroblasts' substrates and comprised the four experimental groups, whereas the untreated floors of culture plastics were used in the control group, in this study. Cells were trypsinized, seeded, and incubated for 48 h. The proliferating activities of fibroblasts were determined by XTT and SRB assay and absorbance (optical density, OD) was measured. One-way ANOVA was used to analyze the differences in the mean OD values between the groups of CAPSET, CalForma, Bio-Gide, TefGen, and the control (p<0.05). Results. From the XTT assay, the mean OD value of the control group, the highest, was significantly greater than that of any of the four experimental groups followed by CalForma, CAPSET, TefGen, and Bio-Gide. Further, the mean OD value of CalForma, was significantly greater compared to that of Bio-Gide. From the SRB assay, Calforma showed the highest mean OD value, which was significantly greater than that of any other groups, followed by the control, CAPSET, Bio-Gide, and TefGen. The mean OD values of both the control and CAPSET were significantly greater compared to that of TefGen (p<0.05). Conclusion. Assessment of the viability and proliferation of cultured fibroblasts seeded and incubated for 48 h on various barrier-material substrates using XTT and SRB assay showed that calcium sulfate $CalForma^{(R)}$ promotes the proliferating activity of human gingival fibroblasts.

Zygotic Expression of c-myc Gene in Mouse Early Embryos: Functional Role of c-myc Promoter (생쥐 초기배아에서 c-myc Proto-Oncogene Promoter의 기능적 활성화)

  • Park, Ki-Soo;Kang, Hae-Mook;Shim, Chan-seob;Sun, Woong;Kim, Jae-man;Lee, Young-Ki;Kim, Kyung-jin
    • The Korean Journal of Zoology
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 1995
  • The c-myc proto-oncogene is Involved In the control of normal cell proliferation and differentiation of many cell lineages. Although it has heen suggested that c-myc may play an important role in the mammalian early development, it Is unclear whether the embryonic c-myc mRNA is originated from zygotic gene expression or stored maternal message. Thus, we have construded expression vectors, In which the 5, flanking sequences including c-myc promoter region and a large non-coding exon I are fused 'sith E. coli lacZ gene that encedes $\beta$-galactosldase as a reporter. As c-myc exon I contains a modulatory sequence, we designed t, vo types of vectors (pcmyc.Gall and pcmyc-Ga12) to examine the role of exon I in c-myc expression. The former contains the complete exon I and the later has a deletion in 40 bp of modulator sequence located In the exon I of c-myc These vectors were microInjected into fertilized one-cell embryos and $\beta$-galactosidase activity was examined by X-gal staining during early embryogenesis. $\beta$-galactosidase activity derived from c-myc promoter was decreased at two-cell stage. The expression level directed by pcmyc- Ga12 was similar to that of pcmyc-Gal1, indicating that the medulatory sequence in exon I may not be Involved at least In the regulation of embryonic c-myc expression. In summary, the present study indicates that the c-myc promoter is functional at the early stage embryo, and the regulation of c-myc expression is under the control of "zygotic" clock of preimplantation mouse embryos.e embryos.

  • PDF

Biological Activity and Biochemical Properties of Water Extracts from Bacillus subtilis-fermented Silkworm (Bombyx mori L.) Powder by Origin (산지별 고초균 발효누에의 이화학적 특성 및 생리활성)

  • Kim, Tae-Hoon;Ahn, Hee-Young;Kim, Young-Wan;Sim, So-Yeon;Seo, Kwon-Il;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1470-1478
    • /
    • 2017
  • The aim of this study was to investigate biological activity and biochemical properties of extracts from Bacillus subtilis-fermented silkworm (Bombyx mori L., SP) powder of different origin (Buan, Namwon, and Boeun). An additional aim was to determine the inhibition of cancer cell (B16-F10, HT-29, LNcaP, and MCF-7) proliferation and nitric oxide (NO) production from lipopolysaccharide (LPS)-induced RAW264.7 cells. Biological activities (${\alpha},{\alpha}^{\prime}$-diphenyl-${\beta}$-picrylhydrazyl [DPPH], free radical scavenging activity, fibrinolytic activity, antiproliferation activity, and anti-inflammatory activity) and biochemical properties (compositional amino acid contents, and mineral contents) were examined in water extracts from silkworm powder and B. subtilis-fermented silkworm powder. The highest amino acid contents were detected in Buan silkworm powder (BU). After fermented, the highest contents were found in B. subtilis-fermented Buan silkworm powder (BBO). The major minerals detected were K, Ca, and Mg. Rates of these minerals, especially those of Na increased after fermented. DPPH radical scavenging activity and fibrinolytic activity were stronger in the fermented group than non-fermented group. DPPH radical scavenging activity and fibrinolytic activity were highest in the extract from BBO. The inhibition activities of LNcaP and MCF-7 cells viability were significantly decreased in the BBO, and there was no inhibition activity in other cancer cells (B16-F10 and HT-29). An SRB assay of the cell viability of RAW 264.7 cells exposed to extracts of silkworm powder and B. subtilis-fermented silkworm powder revealed no toxicity in any of the groups. Compared with the LPS-treated group, the biggest reduction in NO production was detected in the BBO group. Based on these results, extracts from Boeun silkworm powder fermented with B. subtilis could be a candidate material as a dietary supplement for use in healthy functional foods.

Technical Review on Thorium Breeding Cycle (토륨 핵연료 주기 기술동향)

  • Noh, Taewan
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.52-64
    • /
    • 2016
  • The production of nuclear energy from thorium which is non-fissile material was a main issue until the middle of 1970's, because of the thorium's abundance as energy resources, its capability of breeding fissile material U233, and the reduction of long-lived actinides. However, to use thorium as nuclear fuel, some obstacles such as the necessities of external neutron source and long-term neutron irradiation for effective breeding, and the production of high radioactive isotopes in the course of thorium breeding cycle should be overcome. The difficulties to resolve these cons of thorium cycle became the reason of interruption of the related researches in the middle of 1970's. But in the 21st century, the change of societal perspective regarding nuclear energy and the appearance of accelerator-driven nuclear reactor shift those cons into pros and rehabilitate the study of thorium. The high activity of thorium cycle turned out to be a good option as higher resistance and easier detectibility of nuclear proliferation and the employment of subcritical accelerator-driven reactor as external neutron sources is considered to enhance the nuclear safety. In this study we compare the thorium cycle with the currently-used uranium cycle and analyze the technical status and perspective of thorium researches which use accelerator-driven reactors.

Nuclear Transfer using Human CD59 and IL-18BP Double Transgenic Fetal Fibroblasts in Miniature Pigs

  • Ryu, Junghyun;Kim, Minjeong;Ahn, Jin Seop;Ahn, Kwang Sung;Shim, Hosup
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Xenotransplantation involves multiple steps of immune rejection. The present study was designed to produce nuclear transfer embryos, prior to the production of transgenic pigs, using fibroblasts carrying transgenes human complement regulatory protein hCD59 and interleukin-18 binding protein (hIL-18BP) to reduce hyperacute rejection (HAR) and cellular rejection in pig-to-human xenotransplantation. In addition to the hCD59-mediated reduction of HAR, hIL-18BP may prevent cellular rejection by inhibiting the activation of natural killer cells, activated T-cell proliferation, and induction of $IFN-{\gamma}$. Transgene construct including hCD59 and ILI-18BP was introduced into miniature pig fetal fibroblasts. After antibiotic selection of double transgenic fibroblasts, integration of the transgene was screened by PCR, and the transgene expression was confirmed by RT-PCR. Treatment of human serum did not affect the survival of double-transgenic fibroblasts, whereas the treatment significantly reduced the survival of non-transgenic fibroblasts (p<0.01), suggesting alleviation of HAR. Among 337 reconstituted oocytes produced by nuclear transfer using the double transgenic fibroblasts, 28 (15.3%) developed to the blastocyst stage. Analysis of individual embryos indicated that 53.6% (15/28) of embryos contained the transgene. The result of the present study demonstrates the resistance of hCD59 and IL-18BP double-transgenic fibroblasts against HAR, and the usefulness of the transgenic approach may be predicted by RT-PCR and cytolytic assessment prior to actual production of transgenic pigs. Further study on the transfer of these embryos to surrogates may produce transgenic clone miniature pigs expressing hCD59 and hIL-18BP for xenotransplantation.

Beneficial Roles of Azospirillum as Potential Bioinoculant for Eco-Friendly Agriculture (친환경농업을 위한 유용미생물 Azospirillum의 효율적 이용)

  • Gadagi, Ravi;Park, Myoung-Su;Lee, Hyoung-Seok;Seshadri, Sundaram;Chung, Jong-Bae;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.290-303
    • /
    • 2003
  • Modern agriculture has been heavily dependent on chemical fertilizers to meet the food demands of ever increasing population. Progressive depletion of major plant nutrients in soil due to intensive cultivation practices has also necessitated the use of higher dose of chemical fertilizers particularly in soils where the organic matter content is very low. Indiscriminate use of chemical fertilizers and pressure on agriculturists to enhance per area crop yields has led to fast depletion of fossil fuel resources with concomitant increase in the prices of chemical fertilizers and also led to environmental pollution. Hence, the current trend throughout the world is to explore the possibility of using alternate nutrient sources or increasing the efficiency of chemical fertilizers by supplementing them with organic fertilizers and bioinoculants comprising largely microbes like, bacteria, fungi, algae etc to enhance nitrogen and phosphates in the soil thus creating a sustainable agricultural environment. Among the different microbial inoculants or biofertilizers, Azospirillum could be a potential candidate due to its non specific host root colonization. It had the capability to fix $N_2$ in wide pH regimes and even in presence of combined nitrogen. Azospirillum inoculation can increase the crop yield to 10-25% and substitute 25% of recommended doses of nitrogenous fertilizers. Apart from nitrogen fixation, Azospirillum is also involved in the root improvement, the activity which was attributed to an increase in the rate of water and mineral uptake by roots. The ability of Azospirillum to produce phytohormones was reported to enhance the root respiration rate, metabolism and root proliferation. They have also been reported to produce polyhydroxybutyrate, that can be used as a biodegradable thermosplastic. A lot of studies have addressed improvements in enhancing its efficiency to fix nitrogen fixation and hormone production.

Glioblastoma in a Pekingese (페키니즈견의 아교모세포종 증례)

  • Cho, Hyun-kee;Yoo, Dae-Young;Kang, Joo-yeon;Lee, Kwon-Young;Hwang, In-Koo;Choi, Jung-Hoon;Chung, Jin-Young
    • Journal of Veterinary Clinics
    • /
    • v.32 no.6
    • /
    • pp.544-547
    • /
    • 2015
  • An 11-year-old, intact male Pekingese was brought to the Veterinary Teaching Hospital of Kangwon National University with a 10-day history of seizures. Fifteen days before coming to Kangwon National University, the dog had visited a local animal hospital for lameness, and non-steroidal anti-inflammatory drugs were prescribed to treat this symptom. However, 10 days before coming to our hospital, the dog experienced generalized seizures. Two days before his arrival, generalized ataxia and mental dullness also occurred. Our examinations revealed no remarkable findings on a routine blood test or X-ray. However, the neurological examinations confirmed mental dullness, generalized ataxia, and a lack of menace response and pupillary light reflexes. Nine hours later, dyspnea occurred, and 12 hours after that, the patient was euthanized per the client's request. A necropsy of transverse sections confirmed the presence of a prominent midline shift due to extended tumor growth. On histopathological analyses, pseudopalisading necrosis of the glial cells and microvascular proliferation were observed. In immunohistochemical analysis, glial fibrillary acidic protein, proliferating cell nuclear antigens, and ionized calcium binding adaptor molecule 1 immunoreactive cells were observed in the tumor area. Based on the results, the tumor was confirmed to be a glioblastoma. Primary intracranial tumors are rare in the veterinary field. This case report describes the clinical and histopathological findings of glioblastoma in a Pekingese.

Induction of Apoptosis by Pectenotoxin-2 Isolated from Marine Sponges in U937 Human Leukemic Cells (인체 혈구암세포 U937에서 해양해면동물에서 추출된 Pectenotoxin-2에 의한 Apoptosis의 유발에 관한 연구)

  • Shin, Dong Yeok;Kang, Ho Sung;Bae, Song-Ja;Jung, Jee H.;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.63-70
    • /
    • 2006
  • Natural product compounds are the source of numerous therapeutic agents. The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets including anticancer agents. Among these, pectenotoxin-2 (PTX-2), which was first identified as a cytotoxic entity in marine sponges, which depolymerizes actin filaments, was found to be highly effective and more potent to activate an intrinsic pathway of apoptosis in p53-deficient tumor cells compared to those with functional p53 both in vitro and in vivo. However, the anti-proliferative mechanism of the compound at non-cytotoxic concentrations has not yet been explored. In the current study, we sought to investigate anti-proliferation and apoptosis of PTX-2 against U937 human leukemic cells and its underlying molecular mechanism. Exposure of U937 cells to PTX-2 resulted in growth inhibition and induction of apoptosis in dose- and time-dependent manner as measured by MTT assay, fluorescent microscopy and flow cytometric analysis. The anti-proliferative effect of PTX-2 was associated with a marked increase in the expression of cyclin-dependent kinase p21 (WAF1/CIP1) mRNA which was tumor suppressor p53-independent. The increase in apoptosis was connected with a time-dependent down-regulation of anti-apoptotic Bcl-XL and inhibitor of apoptosis proteins (IAPs) family such as XIAP and cIAP-2. Though additional studies are needed, these findings suggested that PTX-2-induced inhibition of U937 cells was associated with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of PTX-2.

  • PDF

The Up-Regulation of miR-199b-5p in Erythroid Differentiation Is Associated with GATA-1 and NF-E2

  • Li, Yuxia;Bai, Hua;Zhang, Zhongzu;li, Weihua;Dong, Lei;Wei, Xueju;Ma, Yanni;Zhang, Junwu;Yu, Jia;Sun, Guotao;Wang, Fang
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.213-219
    • /
    • 2014
  • MicroRNAs (miRNAs) represent a class of small non-coding regulatory RNAs that play important roles in normal hematopoiesis, including erythropoiesis. Although studies have identified several miRNAs that regulate erythroid commitment and differentiation, we do not understand the mechanism by which the crucial erythroid transcription factors, GATA-1and NF-E2 directly regulate and control differentiation via miRNA pathways. In this study, we identified miR-199b-5p as a key regulator of human erythropoiesis, and its expression was up-regulated during the erythroid differentiation of K562 cells. Furthermore, the increase of miR-199b-5p in erythroid cells occurred in a GATA-1- and NF-E2-dependent manner during erythrocyte maturation. Both GATA-1 and NF-E2 bound upstream of the miR-199b gene locus and activated its transcription. Forced expression of miRNA-199b-5p in K562 cells affected erythroid cell proliferation and maturation. Moreover, we identified c-Kit as a direct target of miR-199b-5p in erythroid cells. Taken together, our results establish a functional link among the erythroid transcription factors GATA-1/NF-E2, miR-199b-5p and c-Kit, and provide new insights into the coupling of transcription and post-transcription regulation in erythroid differentiation.