• Title/Summary/Keyword: Non-power system

Search Result 1,733, Processing Time 0.031 seconds

A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates (3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF

Non-Linear Model of Voltage Source Power Converter and Tuning Current controller (전압형 전력 변환기 비선형 모델 및 전류제어기 조정)

  • Park, Sang-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.144-146
    • /
    • 1998
  • In this study Dead time equivalent resistance of Voltage source power converter is very important in current controller design. And Non-linear Modeling method can be applied in Power converter analysis. Using Describing Function method and Non-linear Resistance Modeling. Voltage Source Power Converter Bode diagram and Current controller analysis method are more reality.

  • PDF

Evaluating Economic Feasibility of Solar Power Generation Under the RPS System Using the Real Option Pricing Method: Comparison Between Regulated and Non-regulated Power Providers (실물옵션을 활용한 RPS 실시에 따른 태양광 발전의 경제성 평가: 공급의무 발전사와 일반 발전사와의 비교)

  • Kim, Eun-Man;Kim, Myung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.690-700
    • /
    • 2013
  • This study reviewed how the changes of the government policy on solar power generation projects affected the annual mandatory quotas of the regulated power providers under the RPS (renewable portfolio standard) system and analysed economic feasibility of the investment for meeting their quotas as compared to the case of non-regulated power providers. The analysis results showed that under the discount rate of 7.5%, which was used for the annual national electricity plans for the recent years, both the regulated and non-regulated power providers achieved economic feasibility under both the NPV (net present value) method and the real option pricing method. It was also shown that higher profitability was attained by non-regulated power providers than by their regulated counterparts, which can be attributable to the fact that regulated providers are required to out-source 50% of the total quota. The results of this study are considered to be useful for establishing a meaningful mid term or long term strategy for the future of solar power generation linked to the current RPS system.

The Development of Power Measurement Circuit for Non-Linear Load (비선형 부하에 적용 가능한 전력 계측 회로의 개발)

  • Park, Jong-Chan;Kim, Byung-Jin;Kim, Soo-Gon;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.79-82
    • /
    • 2002
  • Non-linear loads are the sources of power systems harmonics, and the power quality is influenced by harmonics, Recently, the requirements of power quality is important. For the power quality problems. it is very important that the development of power measurement circuit for non-linear load. In this paper, it is discoursed on that high speed sampling circuit and efficient power analysis algorithms. The sampling circuit is implemented using FPGA. Since the power measurement circuit system is composed by FPGA and efficient power algorithms. it is practicable application that accurate power measurement, stable protection relaying, and low cost system configuring.

  • PDF

Evaluation of the Environmental Qualification for Non-metallic Parts (비금속부품 내환경검증 수명평가)

  • Bhang, Keug-Jin;Hong, Jun-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.52-59
    • /
    • 2016
  • Environmental Qualification has been almost developed except those of Non-Material Sub-components for valves and pumps though the time has only passed about 10years since EQ test launch of Korea. However EQ test has been performed by a few of engineers under the conditions that experience of EQ test is insufficient and EQ system is not developed completely. In recent years, Strengthen Nuclear Safety Regulation is being done Strictly Nuclear safety components Verification Procedure for Non-Material Sub-components, but the reports contain only performance test results, not Enviro nmental test methods relating to real Aging Degradation. In this Study, there were developed to performance systematically research to acquire EQ technology for five specimens of the Non-Material Sub-components in the Nuclear Power Plant.

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Controller Design for Static Reactive Power Generator in Transmission System

  • Han, B.M.;Soh, Y.C.;Kim, H.W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.398-403
    • /
    • 1998
  • This paper describes a controller design for the stator reactive power generator in the transmission system. The controller of static reactive power generator was designed using a mathematical model and non-linear state feedback. The performance of controller was verified using computer simulation with EMTP code and experimental work with scaled-model. The dynamic interaction with a simple power system was also analyzed using both the simulation model and hardware scaled-model. Both simulation and experimental results prove that the controller using PI block and non-linear state feedback offers better performance than the controller using PI block only.

  • PDF

A Study on the Properties of the Dual-mode Plasma Torch System for Melting the Non-conductive Waste (비전도성 폐기물 용융처리를 위한 혼합형 플라즈마토치 시스템 특성 연구)

  • Moon, Young-Pyo;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-80
    • /
    • 2016
  • The preliminary test for the dual mode plasma torch system was carried out to explore the operation properties in advance. The dual mode plasma torch system that is able to operate in transferred, non-transferred, or dual mode is very adequate for melting the mixed wastes including nonconductive materials such as concrete, asbestos, etc. since it exploits both the high efficiency of heat transfer to the melt in transferred mode and stable operation in non-transferred mode. Also, system operation including restarting is reliable and very easy. A stationary melter with a refractory structure was designed and manufactured considering the melting behavior of slags to minimize the refractory erosion. The power supply for the dual mode plasma torch system built with high power insulated gate bipolar transistor (IGBT) modules has functions for both current control and voltage control and is sufficient to suppress the harmonics during the operation of the plasma torch. The power supply provides two different voltages for transferred operation and non-transferred. It is confirmed that the operation voltage in transferred is always higher than non-transferred. The dual mode plasma torch system was successfully developed and is under operation for a melting experiment to optimize operation data.

Performance Evaluations of a Novel Prototype of High Frequency Non-Contact Power Transformer

  • Gamage, Laknath;Ishitobi, Manabu;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • In this paper, a practical implementation to reduce leakage flux of a high-frequency inverter based non-contact type power transformer composed of EE-shape ferrite cores is presented for key technology of the next generation medical use X-ray CT scanner system. Design consideration for the unique structure of the non-contact power transformer with 900mm in diameter is also introduced. The complete non-contact transformer is actually arranged by several blocks of the magnetic circuit assembled by using 10 small EE shape cores with 120mm in length. It is experimentally and analytically discussed from a reduced leakage flux viewpoint related to its inductively coupling coefficient. A practical method to lower the leakage flux is described based on effective Copper-Sheet- Treatment placed on EE shape ferrite cores of magnetic circuit.