• Title/Summary/Keyword: Non-manifold model

Search Result 39, Processing Time 0.026 seconds

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Healing of STEP AP214 Automotive CAD Data (STEP AP214 자동차 설계 데이터 정리 시스템)

  • 양정삼;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.170-176
    • /
    • 2002
  • To exchange CAD data between heterogeneous CAD systems, we generally use a neutral format especially STEP, which is the international standard (ISO-10303) for product model data exchange. AP214 (Application Protocol) for the automotive industry not only takes into account geometry and organizational data, but also provides a classification mechanism for product modeling. When reading a STEP file during a design process that is exported from other CAD systems, it is a burden to a designer to go through the tedious process of removing duplicate or non-manifold entities, adjusting parts, and rearranging text. We analyze the structure of AP214 and develop a healing tool to solve the following problem. Without the assembly information in the Master workspace of CATIA, or to read a STEP file from Pro/Engineer, a designer should do a repetitive process of disintegrating an assembly into parts one by one. We have developed a post-processing tool for STEP AP214 that separates out a part from an assembly model and adjusts superfluous or useless entities using the ACIS kernel.

Face Tracking and Recognition on the arbitrary person using Nonliner Manifolds (비선형적 매니폴드를 이용한 임의 얼굴에 대한 얼굴 추적 및 인식)

  • Ju, Myung-Ho;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.342-347
    • /
    • 2008
  • Face tracking and recognition are difficult problems because the face is a non-rigid object. If the system tries to track or recognize the unknown face continuously, it can be more hard problems. In this paper, we propose the method to track and to recognize the face of the unknown person on video sequences using linear combination of nonlinear manifold models that is constructed in the system. The arbitrary input face has different similarities with different persons in system according to its shape or pose. Do we can approximate the new nonlinear manifold model for the input face by estimating the similarities with other faces statistically. The approximated model is updated at each frame for the input face. Our experimental results show that the proposed method is efficient to track and recognize for the arbitrary person.

  • PDF

A Study on the Criteria of the Level-Of-Detail in Feature-based Multi-resolution Modeling (특징형상기반 다중해상도 모델링의 상세수준 결정기준에 관한 연구)

  • Lee S.H.;Lee K-Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.828-831
    • /
    • 2005
  • In feature-based multi-resolution modeling, the features are rearranged according to a criterion for the levels of detail (LOD) of multi-resolution models. In this paper, two different LOD criteria are investigated and discussed. The one is the volumes of subtractive features, together with the precedence of additive features over subtractive features. The other is the volumes of features, regardless of whether the feature types are subtractive or additive. In addition, the algorithms to define and extract the LOD models based on the criteria are also described. The criterion of the volumes of features can be used for a wide range of applications in CAD and CAE in virtue of its generality.

  • PDF

Using Geometric Constraints for Feature Positioning (특징형상 위치 결정을 위한 형상 구속조건의 이용)

  • Kim, S.H.;Lee, K.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.84-93
    • /
    • 1996
  • This paper describes the development of new feature positioning method which embedded into the top-down assembly modeling system supporting conceptual design. In this work, the user provides the geometric constraints representing the position and size of features, then the system calculates their proper solution. The use of geometric constraints which are easy to understand intuitively enables the user to represent his design intents about geometric shapes, and enables the system to propagate the changes automatically when some editing occurs. To find the proper solution of given constraints, the Selective Solving Method in which the redundant or conflict equations are detected and discarded is devised. The validity of feature shapes satisfying the constraints can be maintained by this technique, and under or over constrained user-defined constraints can also be estimated. The problems such as getting the initial guess, controlling the multiple solutions, and dealing with objects of rotational symmetry are also resolved. Through this work, the feature based modeling system can support more general and convenient modeling method, and keeps the model being valid during modifying models.

  • PDF

NORMAL SYSTEMS OF COORDINATES ON MANIFOLDS OF CHERN-MOSER TYPE

  • Schmalz, Gerd;Spiro, Andrea
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.461-486
    • /
    • 2003
  • It is known that the CR geometries of Levi non-degen-erate hypersurfaces in $\C^n$ and of the elliptic or hyperbolic CR submanifolds of codimension two in $\C^4$ share many common features. In this paper, a special class of normalized coordinates is introduced for any CR manifold M which is one of the above three kinds and it is shown that the explicit expression in these coordinates of an isotropy automorphism $f{\in}Aut(M)_o {\subset}Aut(M),\;o{\in}M$, is equal to the expression of a corresponding element of the automorphism group of the homogeneous model. As an application of this property, an extension theorem for CR maps is obtained.

Estimation of Quantitative Source Contribution of Ambient PM-10 Using the PMF Model (PMF모델을 이용한 대기 중 PM-10 오염원의 정량적 기여도 추정)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.719-731
    • /
    • 2003
  • In order to maintain and manage ambient air quality, it is necessary to identify sources and to apportion its sources for ambient particulate matters. The receptor methods were one of the statistical methods to achieve reasonable air pollution strategies. Also, receptor methods, a field of chemometrics, is based on manifold applied statistics and is a statistical methodology that analyzes the physicochemical properties of gaseous and particulate pollutant on various atmospheric receptors, identifies the sources of air pollutants, and quantifies the apportionment of the sources to the receptors. The objective of this study was 1) after obtaining results from the PMF modeling, the existing sources of air at the study area were qualitatively identified and the contributions of each source were quantitatively estimated as well. 2) finally efficient air pollution management and control strategies of each source were suggested. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols, the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided quantitative source contributions (scaled G matrix) and source profiles (scaled F matrix). The results of the PMF modeling showed that the sources were apportioned by secondary aerosol related source 28.8 %, soil related source 16.8%, waste incineration source 11.5%, field burning source 11.0%, fossil fuel combustion source 10%, industry related source 8.3%, motor vehicle source 7.9%, oil/coal combustion source 4.4%, non-ferrous metal source 0.3%. and aged sea- salt source 0.2%, respectively.

A Framework for the Geometric Modeler with Open Architecture (개방형 형상모델러의 시스템 설계)

  • S.H. Han;G.H. Choi;S.H. Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.4
    • /
    • pp.9-18
    • /
    • 1995
  • The use of CAD/CAM systems is growing fast in the shipbuilding industry. To develope a geometric modeler, the existing CAD/CAM systems have been analysed. Because existing systems have closed architectures, it is not easy to investigate the internal structures. However, new trends in the software engineering, open architectured systems, pose some possibility to develope the geometric modeler. Several geometric modelers are analysed to extract component functions and modules. ACIS of the Spatial Technology, AIS of the CAM-I consortium, the STEP part for the geometry and topology, CAD*I of the ESPRIT project, and domestic modelers are investigated. Based on this analysis, a reference model which shows the framework of the modeler is proposed. With the data structure supporting non-manifold topologies, the reference model can be used to encourage a cooperative development program.

  • PDF

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF