• 제목/요약/키워드: Non-linear stress analysis

검색결과 317건 처리시간 0.023초

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

RAP 콘크리트의 비선형 응력-변형률 특성이 강성포장 구조해석에 미치는 영향 (Effects of the Non-linear Stress-Strain Behavior of RAP Concrete on Structural Responses for Rigid Pavement Application)

  • 김국주;천상현;박봉석;티아 맹
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.37-44
    • /
    • 2017
  • PURPOSES : This study is primarily focused on evaluating the effects of the non-linear stress-strain behavior of RAP concrete on structural response characteristics as is applicable to concrete pavement. METHODS : A 3D FE model was developed by incorporating the actual stress-strain behavior of RAP concrete obtained via flexural strength testing as a material property model to evaluate the effects of the non-linear stress-strain behavior to failure on the maximum stresses in the concrete slab and potential performance prediction results. In addition, a typical linear elastic model was employed to analyze the structural responses for comparison purposes. The analytical results from the FE model incorporating the actual stress-strain behavior of RAP concrete were compared to the corresponding results from the linear elastic FE model. RESULTS : The results indicate that the linear elastic model tends to yield higher predicted maximum stresses in the concrete as compared to those obtained via the actual stress-strain model. Consequently, these higher predicted stresses lead to a difference in potential performance of the concrete pavement containing RAP. CONCLUSIONS : Analysis of the concrete pavement containing RAP demonstrated that an appropriate analytical model using the actual stress-strain characteristics should be employed to calculate the structural responses of RAP concrete pavement instead of simply assuming the concrete to be a linear elastic material.

An assessment of non-linear elastic and elasto-plastic analyses with regards to tubular steel piles embedded in sands

  • Adolfo Foriero;Zeinab Bayati
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.397-409
    • /
    • 2023
  • This study examines two traditional approaches (non-linear elastic and elasto-plastic) in association with 2D and 3D FEM analyses of a box-section pile embedded in sand. A particular emphasis is placed on stress singularities concerning both reentrant corners of the pile section and the resulting tension zones. From the experience gained in this study, non-linear elastic soil models are less restrictive when one considers stress singularities and their possible effects on convergence of the solution. At least for monotonic loading, when compared with field tests, non-linear elastic models yield better results than the plasticity ones. On the other hand, although elasto-plastic models are not limited to monotonic loading, they are much more sensitive to stress singularities. For this reason, a spherical elastic region is necessary at the pile tip to ensure convergence. Without this region, one must artificially impose an apparent cohesion to limit the tension stresses within a sand medium.

Delamination analysis of multilayered beams with non-linear stress relaxation behavior

  • Victor I., Rizov
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.543-556
    • /
    • 2022
  • Delamination of multilayered inhomogeneous beam that exhibits non-linear relaxation behavior is analyzed in the present paper. The layers are inhomogeneous in the thickness direction. The dealamination crack is located symmetrically with respect to the mid-span. The relaxation is treated by applying a non-linear stress-straintime constitutive relation. The material properties which are involved in the constitutive relation are distributed continuously along the thickness direction of the layer. The delamination is analyzed by applying the J-integral approach. A time-dependent solution to the J-integral that accounts for the non-linear relaxation behavior is derived. The delamination is studied also in terms of the time-dependent strain energy release rate. The balance of the energy is analyzed in order to obtain a non-linear time-dependent solution to the strain energy release rate. The fact that the strain energy release rate is identical with the J-integral value proves the correctness of the non-linear solutions derived in the present paper. The variation of the J-integral value with time due to the non-linear relaxation behavior is evaluated by applying the solution derived.

성층권 비행선 기낭 막재료에 대한 비선형 거동 연구 (Non-Linear Behavior Analysis for Stratospheric Airship Envelope)

  • 서영욱;우경식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2004
  • In this paper, geometrically non-linear finite element analyses were performed to study the mechanical behavior of the material system of the envelope of stratospheric airships. The microstructure of the load­bearing plain weave layer was identified and modeled. The Updated Lagrangian formulation was employed to consider the geometric non-linearity as well as the induced structural non-linearity for the fiber tows. The stress-strain behavior was predicted and the effective elastic modulus was calculated by numerical experiments. It was found the non-linear stress-strain curves were largely different from those by linear analysis with much higher non-linear elastic moduli. The difference was more distinguishable when the tow waviness was smaller.

  • PDF

일본 한신 대지진에 있어서의 포트 아일랜드의 지진응답해석 (Earthquake Response Analysis at Port Island during the 1995 Hyogoken-nanbu Earthquake(Japan))

  • 황성춘
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.477-484
    • /
    • 2000
  • Earthquake response analyses are conducted for the investigation of the ground shaking during the 1995 Hyogoken-nambu earthquake. Port Island a man made island with about 8{{{{ KAPPA m^2 }} area is chosen for this purpose Because earthquake measurement with vertical array was conducted there. Strain dependent characteristics of soil can be modeled well into Hardin-Drnevich Model. Four analyses are conducted : total stress analysis by equivalent linear method non-linear method. and two effective stress analyses. All analyses except equivalent linear analysis show fairy good agreement with observed record mainly because the non-linear behavior of Holocene clay layer has predominant effect on the behavior of fill, However detailed investigation show that effective stress analyses give much better prediction than total stress analyses.

  • PDF

기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구 (A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

인천 지역 준설토의 비선형 압밀특성 연구 (Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area)

  • 옥영석;안용훈;이철호;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

박막형 압전재료 3203HD의 재료 비선형성을 고려한 바이모프 보 작동기의 비선형 유한 요소해석 (Finite element analysis of the PZT 3203HD bimorph beam actuator based on material non-linear characteristics)

  • 장성훈;김영성;이상기;박훈철;윤광준
    • 한국항공우주학회지
    • /
    • 제32권4호
    • /
    • pp.18-23
    • /
    • 2004
  • 본 논문에서는 고 전압, 고 응력 하에 있는 압전 재료의 재료 비선형 거동을 실험적으로 밝히고, 수치적으로 모사하였다. 응력 하에서, 압전 재료의 비선형 거동을 표현 할 수 있는 실험식을 압전 변형율에서 만들어 내었다. 그 식은 재료 비선형 해석을 위하여, 증분 형태의 유한요소 식에 적용되었다. 압전 상수에 대한 새로운 정의와 증분 형태로 표현된 압전 변형율이 보다 나은 비선형 거동의 복원을 위하여 유한 요소 정식화과정에 적용되었다. 이것으로, 높은 전기장 영역에서도, 박판형 압전 재료의 비선형 거동을 정확하게 복원하였다. 일련의 수행된 실험과 연구 과정의 검증을 위하여, 압전재료 바이모프 보 작동기가 수치적으로와 실험적으로 사용되었다. 재료 비선형 유한요소해석으로 예측된 변위와 실험으로 구해진 변위가 잘 일치함을 확인하였다.