DOI QR코드

DOI QR Code

An assessment of non-linear elastic and elasto-plastic analyses with regards to tubular steel piles embedded in sands

  • Adolfo Foriero (Department of Civil and Water Engineering, Universite Laval) ;
  • Zeinab Bayati (Department of Civil and Water Engineering, Universite Laval)
  • Received : 2020.06.16
  • Accepted : 2023.01.20
  • Published : 2023.02.25

Abstract

This study examines two traditional approaches (non-linear elastic and elasto-plastic) in association with 2D and 3D FEM analyses of a box-section pile embedded in sand. A particular emphasis is placed on stress singularities concerning both reentrant corners of the pile section and the resulting tension zones. From the experience gained in this study, non-linear elastic soil models are less restrictive when one considers stress singularities and their possible effects on convergence of the solution. At least for monotonic loading, when compared with field tests, non-linear elastic models yield better results than the plasticity ones. On the other hand, although elasto-plastic models are not limited to monotonic loading, they are much more sensitive to stress singularities. For this reason, a spherical elastic region is necessary at the pile tip to ensure convergence. Without this region, one must artificially impose an apparent cohesion to limit the tension stresses within a sand medium.

Keywords

Acknowledgement

The authors express their thanks to the civil engineering department at Laval University for their investment in the computational software and technical support of the hardware.

References

  1. Alielahi, H. and Adampira, M. (2016), "Comparison between empirical and experimental ultimate bearing capacity of bored piles; a case study", Arab. J. Geosci., 9(1), 16. https://doi.org/10.1007/s12517-015-2211-y.
  2. Al-Soudani, W.H. and Albusoda, B.S. (2021), "An experimental study on bearing capacity of steel open ended pipe pile with exterior wings under compression load", Geotech. Geol. Eng., 39, 1299-1318. https://doi.org/10.1007/s10706-020-01559-0.
  3. Bakroon, M., Daryaei, R., Aubram, D. and Rackwitz, F. (2019), "Numerical evaluation of buckling in steel pipe piles during vibratory installation", Soil Dyn. Earthq. Eng., 122, 327-336. https://doi.org/10.1016/j.soildyn.2018.08.003.
  4. Broms, B.B. (1963), "Allowable bearing capacity of initially bent piles", J. Soil Mech. Found. Div. (ASCE), 89(5), 73-92. https://doi.org/10.1061/JSFEAQ.0000559
  5. Budhu, M. (2007), Foundations and Earth Retaining Structures, John Wiley & Sons, Tucson, Arizona, USA.
  6. Budhu, M. (2010), Soil Mechanics and Foundations, John Wiley & Sons, Tucson, Arizona, USA.
  7. Canadian Steel Handbook (2007), Canadian Institute of Steel Construction (CISC), 9th Ed., 3rd rev. ISBN: 9780888111241, 088811124X.
  8. Cheung, Y.K., Lee, P.K.K. and Zhao, W.B. (1991), "Elastoplastic analysis of soil-pile interaction", Comput. Geotech., 12(2), 115-132. https://doi.org/10.1016/0266-352x(91)90002-w.
  9. Comodromos, E.M., Anagnostopoulos, C.T. and Georgiadi, M.K. (2003), "Numerical assessment of axial pile group response based on load test", Comput. Geotech., 30(6), 505-515. https://doi.org/10.1016/s0266-352x(03)00017-x.
  10. Comodromos, E.M., Papadopoulou, M.C. and Rentzeperis, I.K. (2009), "Pile foundation analysis and design using experimental data and 3-D numerical analysis", Comput. Geotech., 36(5), 819-836. https://doi.org/10.1016/j.compgeo.2009.01.011.
  11. COMSOL Multiphysics Reference Manual. (2018), Version 5.4., https://doc.comsol.com/5.4/doc/com.comsol.help.comsol/COMSOL_ProgrammingReferenceManual.pdf.
  12. Deng, T., Liu, Q. and Huang, M. (2016), "Buckling of fully embedded single piles by using the modified Vlasov foundation model", Int. J. Struct. Stab. Dyn., 17(1), 1750007. https://doi.org/10.1142/s0219455417500079.
  13. Desai, C.S. (1974), "Numerical design-analysis for piles in sands", J. Geotech. Eng. Div. (ASCE), 100(6), 613-635. https://doi.org/10.1016/0148-9062(74)91242-x.
  14. Desai, C.S. and Holloway, D.M. (1972), "Load-deformation analysis of deep pile foundations", Proceedings of the Symposium on Applications of the Finite Element Method in Geotechnical Engineering, Vicksburg, Mississippi, May.
  15. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", J. Appl. Math., 10(2), 157-165. https://doi.org/10.1090/qam/48291.
  16. Duncan, J.M. and Chang, C.Y. (1970), "Nonlinear analysis of stress and strain in soils", J. Soil Mech. Found. Div. (ASCE), 96(5), 1629-1653. https://doi.org/10.1061/JSFEAQ.0001458
  17. Dunlop, P., Sandiford, R.E. and Erali, D.R. (1993), "Instrumented load test on a bent pile", Proceedings of the 3rd International Conference on Case Histories in Geotechnical Engineering, Rolla, Missouri, June.
  18. Dusicka P., Itanib A.M. and Buckleb I.G. (2007), "Cyclic response of plate steels under large inelastic strains", J. Constr. Steel Res., 63, 156-164. https://doi.org/10.1016/j.jcsr.2006.03.006.
  19. El Kamash, W. and El Naggar, H. (2018), "Numerical study on buckling of end-bearing piles in soft soil subjected to axial loads", Geotech. Geol. Eng., 36(5), 3183-3201. https://doi.org/10.1007/s10706-018-0529-4.
  20. Eslami, A. and Fellenius, B.H. (1997), "Pile capacity by direct CPT and CPTu methods applied to 102 case histories", Can. Geotech. J., 34(6), 886-904. https://doi.org/10.1139/t97-056.
  21. Fahey, M. and Carter, J.P. (1993), "A finite element study of the pressure-meter test in sand using non-linear elastic plastic model", Can. Geotech. J., 30(2), 348-362. https://doi.org/10.1139/t94-096.
  22. Foriero, A. and Bayati, Z. (2018), "Three dimensional FEM buckling analyses of piles embedded in various soil types", Struct. Integr. Life, 18(3), 171-179. UDC: 624.012.45.072.2.04:519.673.
  23. Foriero, A. (2004), "Notes de cours supplementaires". Introduction a la methode des elements finis, Universite Laval, Quebec, Cours GCI-7030, 1-106.
  24. Foriero, A. and Ladanyi, B. (1995), "FEM simulation of interface problem for laterally loaded piles in permafrost", Cold Reg. Sci. Technol., 23(2), 121-126. https://doi.org/10.1016/0165-232x(94)00008-l.
  25. Foriero, A. and Ladanyi, B. (1991), "Generalized FEM algorithm for laterally loaded piles in permafrost", Can. Geotech. J., 28(4), 523-541. https://doi.org/10.1139/t91-069.
  26. Foriero, A. and Ladanyi, B. (1990), "Finite element simulation of behaviour of laterally loaded piles in permafrost", J. Geotech. Eng. (ASCE), 116(2), 266-284. https://doi.org/10.1061/(asce)0733-9410(1990)116:2(266).
  27. Glick, G.W. (1948), "Influence of soft ground on the design of long piles", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Institution of Civil Engineers, London, June.
  28. Hardin, B.O. and Drnevich, V.P. (1972), "Shear modulus and damping in soils: Design equations and curves", J. Soil Mech. Found. Div. ASCE, 98(7), 667-692. https://doi.org/10.1061/JSFEAQ.0001760
  29. Hataf, N. and Shafaghat, A. (2015), "Numerical comparison of bearing capacity of tapered pile groups using 3D FEM", Geomech. Eng., 9(5), 547-567. https://doi.org/10.12989/gae.2015.9.5.547.
  30. Heyman, J. (1972), Coulomb's Memoir on Statics, Cambridge University Press, Cambridge,
  31. Jaky, J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Architects Eng., 7, 355-358.
  32. Jeong, S., Ko, J., Won, J. and Lee, K. (2015), "Bearing capacity analysis of open-ended piles considering the degree of soil plugging", Soils Found., 55(5), 1001-1014. https://doi.org/10.1016/j.sandf.2015.06.007.
  33. Jesmani, M., Nabavi, S.H. and Kamalzare, M. (2014), "Numerical analysis of buckling behavior of concrete piles under axial load embedded in sand", Arab J. Sci. Eng., 39(4), 2683-2693. https://doi.org/10.1007/s13369-014-0970-5.
  34. Kondner, R.L. (1963), "Hyperbolic stress-strain response: cohesive soils", J. Soil Mech. Found. Div. (ASCE), 89(1), 115-143. https://doi.org/10.1061/JSFEAQ.0000479
  35. Kumar Khan, A. and Pise, P.J. (1997), "Dynamic behaviour of curved piles", Comput. Struct., 65(6), 795-807. https://doi.org/10.1016/s0045-7949(97)00043-6.
  36. Lee, J.H. and Salgado, R. (1999), "Determination of pile base resistance in sands", J. Geotech. Geoenviron. Eng., 125(8), 673-683. https://doi.org/10.1061/(asce)1090-0241(1999)125:8(673).
  37. Nadeem, M., Chakraborty, T. and Matsagar, V. (2015), "Nonlinear buckling analysis of slender piles with geometric imperfections", J. Geotech. Geoenviron. Eng., 141(1), 06014014. https://doi.org/10.1061/(asce)gt.1943-5606.0001189.
  38. Meyerhof, G.G. (1976), "Bearing capacity and settlement of pile foundations". J. Geotech. Eng. Div. (ASCE), 102(3), 195-228.  https://doi.org/10.1061/AJGEB6.0000243
  39. Owen, D.R.J. and Hinton, E. (1986), Finite Elements in Plasticity: Theory and Practice, Pine ridge Press Limited, Swansea, Wales, UK.
  40. Paik, K., Lee, J. and Kim, D. (2011), "Axial response and bearing capacity of tapered piles in sandy soil", Geotech. Test. J., 34(2), 122-130. https://doi.org/10.1520/gtj102761.
  41. Ramirez-Henao, A.F. and Paul Smith-Pardo, J. (2015), "Elastic stability of pile-supported wharves and piers", Eng. Struct., 97, 140-151. https://doi.org/10.1016/j.engstruct.2015.04.007.
  42. Ren, Q.X., Hou, C., Lam, D. and Han, L.H. (2014), "Experiments on the bearing capacity of tapered concrete filled double skin steel tubular (CFDST) stub columns", Steel Compos. Struct., 17(5), 667-686. https://doi.org/10.12989/scs.2014.17.5.667.
  43. Rezaiee, M.P. and Mazindrani, Z.H. (1990), "Optimal capacity of axially loaded bent pile", Amirkabir J. Sci. Technol., 4(15), 65-78.
  44. Shields, D.R. (2007), "Buckling of micropiles", J. Geotech. Geoenviron. Eng., 133(3), 334-337. https://doi.org/10.1061/(asce)1090-0241(2007)133:3(334).
  45. Singularities (2015), Singularities in Finite Element Models: Dealing with Red Spots; COMSOL Blog, https://www.comsol.com/blogs/singularities-in-finite-element-models-dealing-with-red-spots/.
  46. Tomlinson, M. and Woodward, J. (2014), Pile Design and Construction Practice, CRC Press, Taylor & Francis Group, London, UK.
  47. Trochanis, A.M., Bielak, J. and Christiano, P.P. (1991), "Three-dimensional nonlinear study of piles", J. Geotech. Eng. ASCE, 117(3), 429-447. https://doi.org/10.1061/(asce)0733-9410(1991)117:3(429).
  48. Veiskarami, M., Eslami, A. and Kumar, J. (2011), "End-bearing capacity of driven piles in sand using the stress characteristics method: analysis and implementation", Can. Geotech. J., 48(10), 1570-1586. https://doi.org/10.1139/t11-057.
  49. Wojciechowski, M. (2018), "A note on the differences between Drucker-Prager and Mohr-Coulomb shear strength criteria", Studia Geotech. et Mech., 40(3), 163-169. https://doi.org/10.2478/sgem-2018-0016.
  50. Wood, D.M. (2007), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, UK.
  51. Zhang, X., Tang, L., Ling, X. and Chan, A. (2020), "Critical buckling load of pile in liquefied soil", Soil Dyn. Earthq. Eng., 135, 106197. https://doi.org/10.1016/j.soildyn.2020.106197.