• Title/Summary/Keyword: Non-linear Deformation

Search Result 350, Processing Time 0.03 seconds

Dynamic Analysis of a Geometrical Non-Linear Plate Using the Continuous-Time System Identification

  • Lim, Jae-Hoon;Choi, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1813-1822
    • /
    • 2006
  • The dynamic analysis of a plate with non-linearity due to large deformation was investigated in this study. There have been many theoretical and numerical analyses of the non-linear dynamic behavior of plates examining theoretically or numerically. The problem is how correctly an analytical model can represent the dynamic characteristics of the actual system. To address the issue, the continuous-time system identification technique was used to generate non-linear models, for stiffness and damping terms, and to explain the observed behaviors with single mode assumption after comparing experimental results with the numerical results of a linear plate model.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • v.17 no.6
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.

Development of machining technology for non-continuous pattern removing plastic deformation around pattern (패턴 주변의 소성변형현상을 제거한 고품위 불연속패턴 가공기술 개발)

  • Jeon, Eun-chae;Je, Tae-Jin;Chang, Sunghwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • Patterned optical components are widely used for optical products such as LCD and lighting. Since CCFL was used as a light source in the products, prism films having linear continuous optical patterns were widely used. However, LED which is a dot light source is popular recently, therefore, the optical products need new optical components having non-continuous optical patterns. Indentation machining method is a powerful method for machining of non-continuous pattern. When a copper mold and a brass mold were machined by this method, severe plastic deformation called pile-up was observed around the patterns. Since pile-up has negative relationship to ductility, this deformation can be eliminated by annealing treatment which makes the materials ductile. No plastic deformation occurred when machined after annealing at $600{^{\circ}C}$ and $575{^{\circ}C}$ for copper and brass, respectively. Finally, non-continuous optical patterns with high quality were machined on a copper mold and a brass mold successively.

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Exact dynamic element stiffness matrix of shear deformable non-symmetric curved beams subjected to initial axial force

  • Kim, Nam-Il;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • v.19 no.1
    • /
    • pp.73-96
    • /
    • 2005
  • For the spatially coupled free vibration analysis of shear deformable thin-walled non-symmetric curved beam subjected to initial axial force, an exact dynamic element stiffness matrix of curved beam is evaluated. Firstly equations of motion and force-deformation relations are rigorously derived from the total potential energy for a curved beam element. Next a system of linear algebraic equations are constructed by introducing 14 displacement parameters and transforming the second order simultaneous differential equations into the first order simultaneous differential equations. And then explicit expressions for displacement parameters are numerically evaluated via eigensolutions and the exact $14{\times}14$ dynamic element stiffness matrix is determined using force-deformation relations. To demonstrate the accuracy and the reliability of this study, the spatially coupled natural frequencies of shear deformable thin-walled non-symmetric curved beams subjected to initial axial forces are evaluated and compared with analytical and FE solutions using isoparametric and Hermitian curved beam elements and results by ABAQUS's shell elements.

Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation (강성 저하된 적층복합판의 비선형 해석)

  • Han, Sung-Cheon;Park, Weon-Tae;Lee, Won-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2661-2669
    • /
    • 2010
  • In this study, a finite element formulation based first-order shear deformation theory is developed for non-linear behaviors of laminated composite plates containing matrix cracking. The multi-directional stiffness degradation is developed for adopting the stiffness variation induced from matrix cracking, which is proposed by Duan and Yao. The matrix cracking can be expressed in terms of the variation of material properties, such as Young's modulus, shear modulus and Possion ratio of plates, and sequently it is possible to predict the variation of the local stiffness. Using the assumed natural strain method, the present shell element generates neither membrane nor shear locking behavior. Numerical examples demonstrate that the present element behaves quite satisfactorily either for the linear or geometrical nonlinear analysis of laminated composite plates. The results of laminated composite plates with matrix cracking may be the benchmark test for the non-linear analysis of damaged laminated composite plates.

Nonlinear vibration analysis of viscoelastic laminated plates undergoing large deflection (점탄성 거동을 하는 복합재료 판의 대변위 진동해석)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.546-552
    • /
    • 2000
  • Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into account the viscoelastic behavior of material properties. Based on von Karman's non-linear deformation theory and Boltzmann's superposition principle, non-linear and hereditary type governing equations are derived. Finite element analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature of viscoelastic laminated plates.

  • PDF

Non-linear Temperature Dependent Deformation Analysis of BGA Package Using Moire Interferometry (모아레 간섭계를 이용한 BGA 패키지의 비선형 열변형 해석)

  • Ju Jin Won;Han Bongtae
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.28-32
    • /
    • 2003
  • Thermo-mechanical behavior of a ceramic ball grid array(CBGA) package assembly and wire bond ball grid array(WB-PBGA) package assemblies are characterized by high sensitive moire interferometry. Moire fringe patterns are recorded and analyzed at various temperatures in a temperature cycle. Thermal-history dependent analyses of global and local deformations are presented, and bending deformation(warpage) of the package and shear strain in the rightmost solder ball are discussed. A significant non-linear global behavior is documented due to stress relaxation at high temperature. The locations of the critical solder ball in WB-PBGA package assemblies are documented.

  • PDF

Prediction and Evaluation of Rubber Components using Large Deformation Non-linear Finite Element Analysis (비선형 대변형 유한요소해석을 이용한 방진고무부품의 특성예측 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Cho, Seong-Do-Seong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.286-291
    • /
    • 2000
  • The finite element analyses of mechanical rubber components are executed to predict the behavior of deformation and stress distribution in destgn step. The non-linear properties of rubber which are described as strain energy functions are important parameters to design and evaluate rubber components. These are determined by material tests which are tension, compression and shear test. The behaviors of loads-displacements of rubber components such as a roll tubber spring and resilient ring and additional spring for railway suspension system are evaluated by using commercial FEA code. It is shown that the results by FEA simulations are in close agreement with the test results.

  • PDF

A Study on the Measurement Methodology for Soft Tissue Deformation Using Laser Extensometer (레이저 변위계를 이용한 생체 연조직의 변형 측정법에 관한 연구)

  • 최경주;홍정화;문무성;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1085-1087
    • /
    • 2002
  • Deformation of soft tissue is known inhomogeneous and non-linear in general. In this study, we propose a measurement methodology of local/global strain during soft tissue elongation precisely using laser extensometer which has high accuracy, resolution and is possible to measure global/local strain. The mechanical tensile test are performed on tibialis cranialis, flexor hallucis longus, extensor digitorum longus of swine hindlimb. In order to measure target displacement, reflective marker is attached to detect elongation on specimen using surgical adhesive. The result of this study is to show that laser extensometer is valid to measure longitudinal elongation which is inhomogeneous and non-linear fur soft tissue.

  • PDF