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Nonlinear vibration analysis of viscoelastic laminated plates

undergoing large deflection

Tae-Woo Kim and Ji-Hwan Kim

ABSTRACT

Dynamic behavior of laminated composite plates undergoing moderately large deflection is investigated taking into

account the viscoelastic behavior of material properties. Based on von Karman’s non-linear deformation theory and

Boltzmann’s superposition principle, non-linear and hereditary type goveming equations are derived. Finite element

analysis and the method of multiple scales is applied to examine the effect of large amplitude on the dissipative nature

of viscoelastic laminated plates.

INTRODUCTION

When polymeric matrix based composites, such as
graphite-epoxy or glass-epoxy, are used for structural
components, viscoelastic behavior is expected due to the
time dependent properties of the matrix. In a certain
environment of high temperature and/or high moisture,
the viscoelastic motion of structures made up of
polymeric composite comes to be prominent and cannot
be neglected. For more accurate prediction of the
structural behavior, many researchers incorporated the
time dependent behavior of polymeric composite into
their field of studies.

In this study, geometrically non-linear analysis of a
laminated composite plate undergoing moderately large
deflection is carried in consideration of the time
dependent behavior of polymeric fiber reinforced
composites. A lot of literatures are available on large
deflection of elastic system and most of them treat
frequency ratio at given deflection order as a main topic.

For viscoelastic system, it seems necessary to examine
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non-linear characteristics of dissipation provided by

viscoelastic material properties as well as frequency ratio.

There are some studies dedicated to geometrically
non-linear analysis of a structure where viscoelastic
property
investigated creep of a viscoelastic column, and showed

material is considered. Vinogradov ({1]
that there is no infinite increase in deflection after creep
buckling when geometric non-linearity is taken into
account. Aboudi [2] analyzed the postbuckling behavior
of viscoelastic laminated plates. The time dependent
postbuckling behavior was presented and results based
on the different plate theories were compared with one
another. Fung et al. [3] studied the dynamic stability of a
viscoelastic beam subjected to harmonic and parametric
excitations simultaneously, and showed variation of
stability boundaries due to the non-linear deformation

caused by some parameters.
In this work, governing equation is derived from
Hamilton’s principle within von Karman’s non-linear

plate theory and Boltzmann’s superposition principle. To
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treat the non-linear and hereditary type governing
equations, finite element method and the method of
multiple scales is employed. For the hereditary
characteristics of the governing equations make it
difficult to decouple the flexure motion, all coupled
equations are attempted to solve simultaneously at the
cost of efficient computation. The exponential decay
ratio is used as a parameter for measuring viscoelastic
dissipation and numerical results are presented for

rectangular plates in large amplitude vibration.

FORMULATION

Fig. 1 shows geometric configuration of a rectangular

plate undergoing moderately large deflection.

Fig. 1 Geometric configuration of a laminated composite
plate

In the theory of first order shear deformation, the

displacement fields are assumed as

u(x,y,z,t) = u(x,y,t) + 2y (x,y,1)
",(va,z:')=V("v}’v’)+z‘l’,(x’)’,’) (l)
ul(x,y,z,l) = W(Xry.f)

where u,,u,,u, are components of the three-dimensional
displacement vector in the x, y and z directions
respectively while w,v,w denote the displacements at the

mid-plane and vy, and v, are the rotations of the normals

to the mid-plane about the y and x axis.

The strain-displacement relations based on von

Karman’s large deformation theory of plate are written in

the following form

€, =u,_+zy , +w, /2

€, = v,y+zwy,’+w,i/2

€, =u, +2y , +V, 2y , W, W, 2)
E, =y, +w,

€, =\|Jx+w,‘

where contracted notations are used for engineering

strains and comma denotes derivative.

For linear viscoelastic constitutive equations,
Boltzmann’s superposition principle is employed, which
is given in a convolution form as follows

o, (0=[ Yo -1, @k, i=12..5 O

J=l

where (_20 are the relaxation functions referred to x-y

coordinate, which is obtained from the axis
transformation of the relaxation moduli Q, referred to

principal material axes.

The equations of motion is derived from extended

Hamilton’s principle for non-conservative system:
* (6T -6U)dt =0 0
4

where 37, 3U are variation of the kinetic energy and the

virtual work by the internal forces respectively.

Now, one can obtain following discretized governing
equation by interpolating displacement and rotation
fields in terms of nodal values and substituting them into

eqn (4) considering eqn(1) to (3)

6
MX+L_§Q(1—1)K,H&=O ©)
where x is the global nodal vector, M is the mass matrix
and the contracted indices are used for relaxation moduli

referred to principal material axes as Q,=0,,, 0,=0.,,

0=, 0=053, @5=0usr Q=0
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METHOD OF ANALYSIS

The relaxation moduli (), referred to the principal
material direction can be represented in terms of
exponential series, which is practically one of the widely
used model for the approximation of viscoelastic
behavior of material. Hence, without taking into account
the variation of temperature and moisture, any relaxation

modulus is assumed in the following form

N,
QW= +Y 0 ep(-d!N=0Of) ~12,...6(6)
j=

where N, is the number of exponential terms required for
approximation, Q"is final stiffness of Q(r), Q,’ is a
constant coefficient, d,’ is a relaxation parameter and
f{®) is a time function that characterizes relaxation

phenomenon.

After substituting eqn(6) into eqn(5), one gets a
nondimensional equation by introducing parameters such
as w/b, vil, wh

— T 1 [3 .
Mi+£>@§Q/(T-T)K,'idr=O %)

where bars denote nondimensional values and T=w;t
with @, being linear frequency. As the relaxation
develops slowly, eqn(7) is expanded in series of

nondimensional relaxation parameters 7’ ¢l

s ¥
Wi+ Y O Riar-Y 70 [ R 00+ a07)=0
i=1 =
®
where 7/ =d' /w,.

For demonstration purposes, relaxation moduli are
assumed that Q,,(¢) is independent of time and the other
moduli have the same time function £) ). Furthermore,
the standard solid model, which is simplest and has a

single exponential term in eqn (6), is used as the time

function ), The non-linear mode vector is assumed to be
the same as the linear mode and single-mode analysis is

carried out. Let
X =¢q(7) )]

where ¢ is the normalized linear mode vector which has
maximum transverse displacement as unity. Substituting
eqn(9) into eqn(8) and multiplying eqn (8) by a vector
that normalizes the coefficient of second derivative term
as unity, one gets a following equation after performing

integration by parts

jrarag +ag -nf (Ba+fg +HaMe
+1f [ AT-1XBg+Bg + B4 e +O7) =0
10

In case of pure elastic structures, first four terms of
eqn(10) compose of the well-known geometrically
nonlinear equation which govemns vibrational motion
with moderately large amplitude and it can be analyzed
by various method. However, the integral term, induced
by dissipative nature, in eqn(10) makes it difficult to
apply any available method to the equation. In this study,
the solution of eqn (10) is sought by means of method of

multiple scales L.

Now, one can write a solution to eqn (17) as follows

QLT ) =a +£q, +am, +£q,+E m, +af g, ...
an
where ¢ denotes a small parameter that is a measure of

the amplitude of oscillation and different time scales are
defined by

Order0:T, =T,
Order | :T, =T, T, =nT (12)
Order2:T,=&'T, T, =enT, T, ='T

Substituting eqn (11) into eqn (10) and collecting terms
of like powers of £ and 7, this leads to a system of

equations and one can solve them sequentially for g,,
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¢1-..9s. The first order solution of the system of

equations can be expressed in the following form

g, = AT,...T)exp(iT) + A(T,..., T)exp(~iT})  (13)

where A is complex conjugate of A. The detailed
expression of coefficient A and 4 on each time scale
are determined from conditions that g,,...,q, have no
secular terms which increase with time infinitely. The
conditions for uniform expansion are obtained in course
of solving the equation set sequentially.

Initial conditions are imposed as velocity zero and
amplitude-to-thickness ratio w, By incorporating of
conditions for uniform expansion and initial conditions

into eqn(13), the lowest order solution up to second order

time scale comes to

q(T) = wy exp{m(T) T} cos{n(T)T} (14)

where
m(T)=-nB,/2-KT)sin(n’ BT/ 4)

n(Ty=1+7"B,(38, /8-1)+ h(T)cos(’ BT / 4) (15.2)
with

(15.1)

WT)=w,(3a, /8-5a2 /12)exp(-B,nT)  (16)

Eqn(15.1), normalized exponential decay ratio,
measures dissipation and eqn(15.2) means ratio of
nonlinear damped frequency to linear undamped
frequency. As one can see, the last terms of eqn(15.1)
and eqn(15.2) reflect geometric nonlinearity. The ratio of
nonlinear to linear frequency for pure elastic case can be
easily induced from eqn(15.2) by making 7 go to zero,
which means available data of literatures on frequency
ratio for elastic vibration analysis with large amplitude
can be used directly to investigate the nonlinear effect on
dissipation parameter, for the ratio is also a factor in
eqn(24.1) as well, though limited in small range of
deflection order due to breakdown of the perturbation
method. From eqn(15.1) and eqn(15.2) one can also

expect that nonlinear effect on dissipation is not as

apparent as on frequency, for magnitude of nonlinear
term in those each are subject to harmonic functions with
long period and opposite phase, this to cosine function of
value around one and that to sine function of value

around zero.

NUMERICAL EXAMPLES AND DISCUSSION

For finite element analysis, sixteen-node Lagrangian
rectangular element is introduced and a 5x5 mesh over
the whole plate is used after a convergence study test
which is omitted in this paper for brevity. In the
subsequent section, following geometric, material
properties and boundary conditions are used, not
otherwise stated, to obtain the numerical results
V=100, b/I=1, E,(0)/E,(0)=40,
G, (0YE(0)=G 5,(0)/E0)=0.5, G,5(0)/E,(0)=0.2,
v,,(0)=0.25, k=5/6, £T)=0.4+0.6exp(-0.57),
B.C.: u=v=w=0 along x=0,b and u=v=w=0 along y=0,/.

To determine range of the small parameter, namely
initial maximum amplitude-to-thickness ratio, within
which results from the present formulation is reasonable,
results of present work for pure elastic cases, r=0, are
compared with those of a available literature. Fig. 2
shows the frequency ratio of nonlinear to linear
fundamental frequency versus amplitude-to-thickness
ratio for a simply supported laminated composite plate. It
can be concluded that in the order of amplitude-to-
thickness ratio smaller than 0.4, the present approach
gives reasonable results in both cases. Discrepancy found
in the area of larger amplitude for thicker plates is
ascribed to difference in theory and method of analysis
employed by Ref. 11, high order shear deformation
theory and direct integration method, from present

approach.
Noting that m;, means linear dissipation parameter,
-nB,/2, and n, linear damped frequency, 1+1f8(84 /8-1),

the effect of large deflection on dissipation and
frequency is shown in Fig. 3. One can see that large
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deflection has far less effect on dissipation than on
frequency, as mentioned above, by observing that
nonlinear effect leads at maximum to only 4% increase
in dissipation parameter compared with that of linear
analysis, while over 20% increase in frequency for initial
amplitude-to-thickness ratio w,=0.6. The amount of
increase caused by nonlinear effect is proportional to
square of w;, as can be easily understood from eqn(15.1)
and eqn(15.2). Fig4 show the effect of relaxation
parameter on the nonlinear behavior. It is presented that
more viscoelastic material induces more rapid
development of damped behavior without affecting peak
value of the dissipation parameter and initial frequency
variation. The time taken for dissipation parameter to
reach the peak value is plotted against relaxation
parameter in Fig.5, noting 7, is peak time. It is in inverse
proportional to 7, which is derived easily through
differentiating eqn(15.1) with respect to time and seeking
the time for the derivative of eqn(15.1) to vanish. Finally,
time history of transverse displacement at the maximum
deflection point is plotted in Fig. 6 using eqn(14) and
compared with that from linear analysis. One can see that
variation of amplitude at maximum deflection point
shows little difference between linear and nonlinear
analysis in contrast to apparent difference in frequency
for a case which has about 4% and 20% difference in
dissipation parameter and frequency respectively as
nonlinear to linear ratio. From these figures, nonlinear
effect appears to be a more important factor to be
considered in frequency analysis rather than magnitude

analysis.

For more parametric studies on the effect of aspect
ratio, slenderness ratio, boundary condition, staking
sequence and so forth, frequency ratio from numerous
previous literatures on elastic analysis of nonlinear
vibration can be used in a limit where the perturbation
method makes sense. It is to be noted that in this paper

two small parameters, ¢ and 1, are assumed to be in same

order and there should be rearrangement among terms to
be considered in eqn(11) and eqn(12) according to order

of magnitude if the two parameters have different orders.

CONCLUSION

Geometric nonlinear behavior of laminated composite
plates undergoing free vibration with large amplitude has
been analyzed taking into account the time dependent
material properties and results were compared with those
of linear analysis. Within a limit on magnitude of a small
parameter where perturbation method is applicable, it is
shown that large deflection increases dissipative nature
of viscoelastic laminated plates and nonlinear effect is in
proportion to square of initial deflection for both
dissipation parameter and frequency. For the nonlinear
effect on the former is not as much as on the latter,
nonlinear effect is more to be considered for frequency

analysis rather than for magnitude analysis.
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