• Title/Summary/Keyword: Non-linear

Search Result 6,035, Processing Time 0.039 seconds

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

A new automatic white balance algorithm using non-linear gain (Non-linear gain을 적용한 Automatic White Balance기법)

  • Yun, Se-Hwan;Kim, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.27-29
    • /
    • 2006
  • In this paper, we propose a new method of automatic white balance which is one of the image signal processing techniques. Our method is conceptually based on gray world assumption. However, while previous methods generate linear results as multiplying pixel values by a gain, our method generates non-linear results using the feature of B-Spline curves. The two merits of deriving non-linear results are preventing AWB failure from transforming strong color of high level into wrong color and well preserving original contrast of an input image.

  • PDF

An asymptotic analysis on non-linear free vibration of squarely-reticulated circular plates

  • Nie, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.547-560
    • /
    • 1999
  • In this paper an asymptotic iteration method is adopted to analyze non-linear free vibration of reticulated circular plates composed of beam members placed in two orthogonal directions. For the resulting linear ordinary differential equations in the process of iteration, the power series with rapid convergence has been applied to obtain an analytical solution for non-linear characteristic relation between the amplitude and frequency of the structure. Numerical examples are given, and the phenomena indicating hardening of such structures have been presented for the (immovable or movable) simply-supported and clamped circular plates.

AN ACCELERATING SCHEME OF CONVERGENCE TO SOLVE FUZZY NON-LINEAR EQUATIONS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose an accelerating scheme of convergence of numerical solutions of fuzzy non-linear equations. Numerical experiments show that the new method has significant acceleration of convergence of solutions of fuzzy non-linear equation. Three-dimensional graphical representation of fuzzy solutions is also provided as a reference of visual convergence of the solution sequence.

New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid (유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링)

  • Lee, Su-Il;Jeong, Jin-Tae;Im, Hyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.

New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid (유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링)

  • Lee, Soo-Il;Chung, Jin-Tai;Im, Hyung-Bin
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

Vibration Analysis and Non-linear Equilibrium Equations of a Curved Pipe Conveying Fluid (유체가 흐르는 곡선관의 진동 해석과 비선형 평형 방정식)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.983-986
    • /
    • 2005
  • Free vibration characteristics of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. Using the perturbation method, the non-linear governing equations divided into two parts; the steady state non-linear equilibrium equations and the linearized equations of motion in the neighborhood of the equilibrium position. The natural frequencies are computed from the linearized equations of motion. In this study, the equilibrium positions are determined by two types of equations, i.e., (1) the non-linear equations, and (2) the equations obtained by neglecting the non-linear terms. The natural frequencies obtained from the non-linear equilibrium equations are compared to those obtained from the linearized equilibrium equations. From the results, as the fluid velocity increases, the equilibrium position should be determined from the nonlinear equations for the vibration analysis of the curved pipe conveying fluid.

  • PDF

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

Superharmonic and subharmonic vibration resonances of rotating stiffened FGM truncated conical shells

  • Hamid Aris;Habib Ahmadi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.545-562
    • /
    • 2023
  • In this work, superharmonic and subharmonic resonance of rotating stiffened FGM truncated conical shells exposed to harmonic excitation in a thermal environment is investigated. Utilizing classical shell theory considering Coriolis acceleration and the centrifugal force, the governing equations are extracted. Non-linear model is formulated employing the von Kármán non-linear relations. In this study, to model the stiffener effects the smeared stiffened technique is utilized. The non-linear partial differential equations are discretized into non-linear ordinary differential equations by applying Galerkin's method. The method of multiple scales is utilized to examine the non-linear superharmonic and subharmonic resonances behavior of the conical shells. In this regard, the effects of the rotating speed of the shell on the frequency response plot are investigated. Also, the effects of different semi-vertex angles, force amplitude, volume-fraction index, and temperature variations on the frequency-response graph are examined for different rotating speeds of the stiffened FGM truncated conical shells.