• 제목/요약/키워드: Non-ionizing radiation

검색결과 88건 처리시간 0.034초

비전리 방사선 (근적외선) 기반 의료영상 활용 가능성 평가: 당뇨발 (The Evaluation of Non-Ionizing Radiation (Near-Infrared Radiation) based Medical Imaging Application : Diabetes Foot)

  • 정영진;신철원;안성민;홍준용;안윤진;임청환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권3호
    • /
    • pp.399-406
    • /
    • 2016
  • 비전리-방사선의 일종인 근적외선은 비침습적이고, 비전리성을 가지며, 생체 내 높은 투과성을 가지는 전자기파로, 진단을 위한 의료영상분야에 전 세계적으로 관심이 증가하여 그 활용 가능성이 활발히 연구되어지고 있다. 그러나 현재 국내에서 근적외선 의료영상의 활용은 극히 제한되어 있으며, 큰 관심을 가지고 있지 못하여, 새롭게 형성되는 근적외선 기반 의료영상 분야의 방사선사의 대응 역량의 강화가 필요시 된다. 본 연구에서는 근적외선의 특징 및 영상화 원리를 간략히 소개하고, 이를 이용한 최신의 연구 주제 및 세계적인 연구 동향을 소개함으로서 국내 방사선사의 역량을 강화하고자 한다. 특히, 임상적 활용 가능성이 매우 높은 상처 및 당뇨발등의 연구 주제에 대해서 소개하여, 이 분야의 발전을 가속화 시키는데 기여하고자 한다.

방사선 처리에 의한 선충 방제 효과 (Experimental Study on Physical Control of Nematodes Using The Ionizing Radiation)

  • 이재광;유대현;이면주
    • 한국환경과학회지
    • /
    • 제14권12호
    • /
    • pp.1113-1117
    • /
    • 2005
  • Gamma-ray treatment was used to exterminate nematodes, which were harmful to agriculture When gamma-ray at the dose range of $5\~75$ kGy was irradaidated, nematodes were reduced by $40\~50\%$ When irradiated over 30 kGy, almost nematodes were non-mobile and fluorochromatic reactions showed that $60\;\~80\%$ of nematodes with non-mobility died after irradiation. The results of electron spin resonance spectroscopy suggested that radicals generated by radiolysis could damage to nematodes.

PREVENTION OF CIGARETTE SMOKE INDUCED LUNG CANCER BY LOW LET IONIZING RADIATION

  • Sanders, Charles L.
    • Nuclear Engineering and Technology
    • /
    • 제40권7호
    • /
    • pp.539-550
    • /
    • 2008
  • Lung cancer is the most prevalent global cancer, ${\sim}90%$ of which is caused by cigarette smoking. The LNT hypothesis has been inappropriately applied to estimate lung cancer risk due to ionizing radiation. A threshold of ${\sim}1\;Gy$ for lung cancer has been observed in never smokers. Lung cancer risk among nuclear workers, radiologists and diagnostically exposed patients was typically reduced by ${\sim}40%$ following exposure to <100 mSv low LET radiation. The consistency and magnitude of reduced lung cancer in nuclear workers and occurrence of reduced lung cancer in exposed non-worker populations could not be explained by the HWE. Ecologic studies of indoor radon showed highly significant reductions in lung cancer risk. A similar reduction in lung cancer was seen in a recent well designed case-control study of indoor radon, indicating that exposure to radon at the EPA action level is associated with a decrease of ${\sim}60%$ in lung cancer. A cumulative whole-body dose of ${\sim}1\;Gy$ gamma rays is associated with a marked decrease in smoking-induced lung cancer in plutonium workers. Low dose, low LET radiation appears to increase apoptosis mediated removal of $\alpha$-particle and cigarette smoke transformed pulmonary cells before they can develop into lung cancer.

Effects on G2/M Phase Cell Cycle Distribution and Aneuploidy Formation of Exposure to a 60 Hz Electromagnetic Field in Combination with Ionizing Radiation or Hydrogen Peroxide in L132 Nontumorigenic Human Lung Epithelial Cells

  • Jin, Hee;Yoon, Hye Eun;Lee, Jae-Seon;Kim, Jae-Kyung;Myung, Sung Ho;Lee, Yun-Sil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.119-124
    • /
    • 2015
  • The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or $H_2O_2$, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM $H_2O_2$ for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or $H_2O_2$ (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

치과방사선영상 검사는 위험한 술식인가? (Are dental radiographs dangerous?)

  • 이병도
    • 대한치과의사협회지
    • /
    • 제54권2호
    • /
    • pp.155-162
    • /
    • 2016
  • Radiographs can help in the diagnosis and treatment planning, but the exposure to ionizing radiation may elevate the risk of developing cancer in a person's lifetime. The objective of this review is to briefly summarize 1) radiation risk, especially cancer risks associated with diagnostic imaging, 2) linear, non-threshold (LNT) hypothesis, 3) the risks of radiation exposure to a fetus, and 4) the campaign of Image Gently. The individual risk of radiation-related cancer from any single medical imaging procedure is extremely small and it is not likely to be cancer risk at doses lower than 100 mGy, but patients may be harmed by avoiding diagnostic imaging due to fear of radiation hazard. Dentists need to understand the radiation doses delivered by various radiographic techniques and the acceptable exposure thresholds to effectively advise the patient and to reduce the unnecessary radiation

  • PDF

방사선과 염화수은의 일시 및 반복 복합 처리된 효모세포의 산화적 스트레스 적응과 형태 변화 (Effect of Ionizing Radiation and Mercury Chloride (II) on Cell Morphology in Yeast Cells Frequently and Temporarily Treated with Both Stressors)

  • 김수현;김진규
    • 환경생물
    • /
    • 제28권2호
    • /
    • pp.101-107
    • /
    • 2010
  • Metal ions are essential to life. However, some metals such as mercury are harmful, even when present at trace amounts. Toxicity of mercury arises mainly from its oxidizing properties. Ionizing radiation (IR) is an active tool for destruction of cancer cells and diagnosis of diseases, etc. IR induces DNA double strand breaks in the nucleus, In addition, it causes lipid peroxidation, ceramide generation, and protein oxidation in the membrane, cytoplasm and nucleus. Yeasts have been a commonly used material in biological research. In yeasts, the physiological response to changing environmental conditions is controlled by the cell types. Growth rate, mutation and environmental conditions affect cell size and shape distributions. In this work, the effect of IR and mercury chloride (II) on the morphology of yeast cells were investigated. Saccharomyces cerevisiae cells were treated with IR, mercury chloride (II) and IR combined with mercury chloride (II). Non-treated cells were used as a control group. Morphological changes were observed by a scanning electron microscope (SEM). The half-lethal condition from the previous experimental results was used to the IR combined with mercury. Yeast cells were exposed to 400 and 800 Gy at dose rates of 400Gy $hr^{-1}$ or 800 Gy $hr^{-1}$, respectively. Yeast cells were treated with 0.05 to 0.15 mM mercury chloride (II). Oxidative stress can damage cellular membranes through a lipidic peroxidation. This effect was detected in this work, after treatment of IR and mercury chloride (II). The cell morphology was modified more at high doses of IR and high concentrations of mercury chloride(II). IR and mercury chloride (II) were of the oxidative stress. Cell morphology was modified differently according to the way of oxidative stress treatment. Moreover, morphological changes in the cell membrane were more observable in the frequently stress treated cells than the temporarily stress treated cells.

방사선을 조사한 마우스에서 비장세포에 대한 톳의 보호 작용 (Protective effect of Hizikia fusiforme on radiation-induced damage in splenocytes)

  • 김아름;빙소진;조진희;안긴내;이지혁;전유진;이병걸;지영흔
    • 대한수의학회지
    • /
    • 제55권1호
    • /
    • pp.21-30
    • /
    • 2015
  • The immune system is specifically sensitive to oxidative stress induced by ionizing radiation because of its rapid proliferative activity. For this reason, an instructive immune system is one of the best ways to minimize side effects, such immunodeficiency, of gamma radiation. Over the past few decades, several natural plants with antioxidant and immunomodulatory properties have been identified as adjuncts for nontoxic and successful radiotherapy. Hizikia fusiforme extract (HFE) containing plentiful dietary fiber and fucoidan is known for its instructive antioxidant capacity, immunomodulation abilities, and immune activation. In this study, we determined whether HFE protects radiosensitive immune cells from gamma radiation-induced damage. C57BL/6 mice were irradiated with gamma-ray. The effect of HFE on the ionizing radiation damage of immune cells was then evaluated with an MTT assay, 3H-thymidine incorporation assay, and PI staining. We found that HFE stimulated the proliferation of gamma-ray irradiated immune cells without cytotoxic effects. We also observed that HFE not only decreased DNA damage but also reduced gamma radiation-induced apoptosis of the immune cells. Our results suggest that HFE can protect immune cells from gamma-ray damage and may serve as an effective, non-toxic radioprotective agent.

Radiotherapy for gastric mucosa-associated lymphoid tissue lymphoma: dosimetric comparison and risk assessment of solid secondary cancer

  • Bae, Sun Hyun;Kim, Dong Wook;Kim, Mi-Sook;Shin, Myung-Hee;Park, Hee Chul;Lim, Do Hoon
    • Radiation Oncology Journal
    • /
    • 제35권1호
    • /
    • pp.78-89
    • /
    • 2017
  • Purpose: To determine the optimal radiotherapy technique for gastric mucosa-associated lymphoid tissue lymphoma (MALToma), we compared the dosimetric parameters and the risk of solid secondary cancer from scattered doses among anterior-posterior/ posterior-anterior parallel-opposed fields (AP/PA), anterior, posterior, right, and left lateral fields (4_field), 3-dimensional conformal radiotherapy (3D-CRT) using noncoplanar beams, and intensity-modulated radiotherapy composed of 7 coplanar beams (IMRT_co) and 7 coplanar and noncoplanar beams (IMRT_non). Materials and Methods: We retrospectively generated 5 planning techniques for 5 patients with gastric MALToma. Homogeneity index (HI), conformity index (CI), and mean doses of the kidney and liver were calculated from the dose-volume histograms. Applied the Biological Effects of Ionizing Radiation VII report to scattered doses, the lifetime attributable risk (LAR) was calculated to estimate the risk of solid secondary cancer. Results: The best value of CI was obtained with IMRT, although the HI varied among patients. The mean kidney dose was the highest with AP/PA, followed by 4_field, 3D-CRT, IMRT_co, and IMRT_non. On the other hand, the mean liver dose was the highest with 4_field and the lowest with AP/PA. Compared with 4_field, the LAR for 3D-CRT decreased except the lungs, and the LAR for IMRT_co and IMRT_non increased except the lungs. However, the absolute differences were much lower than <1%. Conclusion: Tailored RT techniques seem to be beneficial because it could achieve adjacent organ sparing with very small and clinically irrelevant increase of secondary solid cancer risk compared to the conventional techniques.

Electrical Impedance Tomography as a Primary Screening Technique for Breast Cancer Detection

  • Akhtari-Zavare, Mehrnoosh;Latiff, Latiffah A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.5595-5597
    • /
    • 2015
  • Electrical impedance tomography (EIT) is a new non-invasive, mobile screening method which does not use ionizing radiation to the human breast. It is based on the theory that cancer cells display altered local dielectric properties, thus demonstrating measurably higher conductivity values. This article reviews the utilisation of EIT in breast cancer detection. It could be used as an adjunct to mammography and ultrasonography for breast cancer screening.

Classification of Biological Effect of 1,763 MHz Radiofrequency Radiation Based on Gene Expression Profiles

  • Im, Chang-Nim;Kim, Eun-Hye;Park, Ae-Kyung;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • 제8권1호
    • /
    • pp.34-40
    • /
    • 2010
  • Radiofrequency (RF) radiation might induce the transcription of a certain set of genes as other physical stresses like ionizing radiation and UV. To observe transcriptional changes upon RF radiation, we exposed WI-38, human lung fibroblast cell to 1763 MHz of mobile phone RF radiation at 60 W/kg of specific absorption rate (SAR) for 24h with or without heat control. There were no significant changes in cell numbers and morphology after exposure to RF radiation. Using quantitative RT-PCR, we checked the expression of three heat shock protein (HSP) (HSPA1A, HSPA6 and HSP105) and seven stress-related genes (TNFRSF11B, FGF2, TGFB2, ITGA2, BRIP1, EXO1, and MCM10) in RF only and RF/HS groups of RF-exposed cells. The expressions of three heat shock proteins and seven stress-related genes were selectively changed only in RF/HS groups. Based on the expression of ten genes, we could classify thermal and non-thermal effect of RF-exposure, which genes can be used as biomarkers for RF radiation exposure.