• Title/Summary/Keyword: Non-homologous end joining

Search Result 15, Processing Time 0.027 seconds

Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis

  • Yun, Hyeseon;Kim, Keunpil
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.607-612
    • /
    • 2019
  • During meiosis, programmed double-strand breaks (DSBs) are repaired via recombination pathways that are required for faithful chromosomal segregation and genetic diversity. In meiotic progression, the non-homologous end joining (NHEJ) pathway is suppressed and instead meiotic recombination initiated by nucleolytic resection of DSB ends is the major pathway employed. This requires diverse recombinase proteins and regulatory factors involved in the formation of crossovers (COs) and non-crossovers (NCOs). In mitosis, spontaneous DSBs occurring at the G1 phase are predominantly repaired via NHEJ, mediating the joining of DNA ends. The Ku complex binds to these DSB ends, inhibiting additional DSB resection and mediating end joining with Dnl4, Lif1, and Nej1, which join the Ku complex and DSB ends. Here, we report the role of the Ku complex in DSB repair using a physical analysis of recombination in Saccharomyces cerevisiae during meiosis. We found that the Ku complex is not essential for meiotic progression, DSB formation, joint molecule formation, or CO/NCO formation during normal meiosis. Surprisingly, in the absence of the Ku complex and functional Mre11-Rad50-Xrs2 (MRX) complex, a large portion of meiotic DSBs was repaired via the recombination pathway to form COs and NCOs. Our data suggested that Ku complex prevents meiotic recombination in the elimination of MRX activity.

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E.;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

Foldback Intercoil DNA and the Mechanism of DNA Transposition

  • Kim, Byung-Dong
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.80-86
    • /
    • 2014
  • Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as $180^{\circ}$ and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER (DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자)

  • Oh, Jung-Hwan;Lee, Deok-Won;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

CRISPR as a strong gene editing tool

  • Shen, Shengfu;Loh, Tiing Jen;Shen, Hongling;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.20-24
    • /
    • 2017
  • Clustered regularly-interspaced short palindromic repeats (CRISPR) is a new and effective genetic editing tool. CRISPR was initially found in bacteria to protect it from virus invasions. In the first step, specific DNA strands of virus are identified by guide RNA that is composed of crRNA and tracrRNA. Then RNAse III is required for producing crRNA from pre-crRNA. In The second step, a crRNA:tracrRNA:Cas9 complex guides RNase III to cleave target DNA. After cleavage of DNA by CRISPR-Cas9, DNA can be fixed by Non-Homologous End Joining (NHEJ) and Homology Directed Repair (HDR). Whereas NHEJ is simple and random, HDR is much more complex and accurate. Gene editing by CRISPR is able to be applied to various biological field such as agriculture and treating genetic diseases in human.

The road less traveled: strategies to enhance the frequency of homology-directed repair (HDR) for increased efficiency of CRISPR/Cas-mediated transgenesis

  • Devkota, Sushil
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.437-443
    • /
    • 2018
  • Non-homologous end joining (NHEJ), and to a lesser extent, the error-free pathway known as homology-directed repair (HDR) are cellular mechanisms for recovery from double-strand DNA breaks (DSB) induced by RNA-guided programmable nuclease CRISPR/Cas. Since NHEJ is equivalent to using a duck tape to stick two pieces of metals together, the outcome of this repair mechanism is prone to error. Any out-of-frame mutations or premature stop codons resulting from NHEJ repair mechanism are extremely handy for loss-of-function studies. Substitution of a mutation on the genome with the correct exogenous repair DNA requires coordination via an error-free HDR, for targeted transgenesis. However, several practical limitations exist in harnessing the potential of HDR to replace a faulty mutation for therapeutic purposes in all cell types and more so in somatic cells. In germ cells after the DSB, copying occurs from the homologous chromosome, which increases the chances of incorporation of exogenous DNA with some degree of homology into the genome compared with somatic cells where copying from the identical sister chromatid is always preferred. This review summarizes several strategies that have been implemented to increase the frequency of HDR with a focus on somatic cells. It also highlights the limitations of this technology in gene therapy and suggests specific solutions to circumvent those barriers.

Evolution of CRISPR towards accurate and efficient mammal genome engineering

  • Ryu, Seuk-Min;Hur, Junseok W;Kim, Kyoungmi
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.475-481
    • /
    • 2019
  • The evolution of genome editing technology based on CRISPR (clustered regularly interspaced short palindromic repeats) system has led to a paradigm shift in biological research. CRISPR/Cas9-guide RNA complexes enable rapid and efficient genome editing in mammalian cells. This system induces double-stranded DNA breaks (DSBs) at target sites and most DNA breakages induce mutations as small insertions or deletions (indels) by non-homologous end joining (NHEJ) repair pathway. However, for more precise correction as knock-in or replacement of DNA base pairs, using the homology-directed repair (HDR) pathway is essential. Until now, many trials have greatly enhanced knock-in or substitution efficiency by increasing HDR efficiency, or newly developed methods such as Base Editors (BEs). However, accuracy remains unsatisfactory. In this review, we summarize studies to overcome the limitations of HDR using the CRISPR system and discuss future direction.

Cadmium chloride down-regulates the expression of Rad51 in HC11 cells and reduces knock-in efficiency

  • Ga-Yeon Kim;Man-Jong Kang
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.99-108
    • /
    • 2023
  • Background: Efficient gene editing technology is needed for successful knock-in. Homologous recombination (HR) is a major double-strand break repair pathway that can be utilized for accurately inserting foreign genes into the genome. HR occurs during the S/G2 phase, and the DNA mismatch repair (MMR) pathway is inextricably linked to HR to maintain HR fidelity. This study was conducted to investigate the effect of inhibiting MMR-related genes using CdCl2, an MMR-related gene inhibitor, on HR efficiency in HC11 cells. Methods: The mRNA and protein expression levels of MMR-related genes (Msh2, Msh3, Msh6, Mlh1, Pms2), the HR-related gene Rad51, and the NHEJ-related gene DNA Ligase IV were assessed in HC11 cells treated with 10 μM of CdCl2 for 48 hours. In addition, HC11 cells were transfected with a CRISPR/sgRNA expression vector and a knock-in vector targeting Exon3 of the mouse-beta casein locus, and treated with 10 μM cadmium for 48 hours. The knock-in efficiency was monitored through PCR. Results: The treatment of HC11 cells with a high-dose of CdCl2 decreased the mRNA expression of the HR-related gene Rad51 in HC11 cells. In addition, the inhibition of MMR-related genes through CdCl2 treatment did not lead to an increase in knock-in efficiency. Conclusions: The inhibition of MMR-related gene expression through high-dose CdCl2 treatment reduces the expression of the HR-related gene Rad51, which is active during recombination. Therefore, it was determined that CdCl2 is an inappropriate compound for improving HR efficiency.

Epidermal Growth Factor Receptor-Related DNA Repair and Radiation-Resistance Regulatory Mechanisms: A Mini-Review

  • Bai, Jing;Guo, Xiao-Guang;Bai, Xiao-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.4879-4881
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) overexpression is associated with resistance to chemotherapy and radiotherapy. The EGFR modulates DNA repair after radiation-induced damage through an association with the catalytic subunit of DNA protein kinase. DNA double-strand breaks (DSBs) are the most lethal type of DNA damage induced by ionizing radiation, and non-homologous end joining is the predominant pathway for repair of radiation-induced DSBs. Some cell signaling pathways that respond to normal growth factors are abnormally activated in human cancer. These pathways also invoke the cell survival mechanisms that lead to resistance to radiation. The molecular connection between the EGFR and its control over DNA repair capacity appears to be mediated by one or more signaling pathways downstream of this receptor. The purpose of this mini-review was not only to highlight the relation of the EGFR signal as a regulatory mechanism to DNA repair and radiation resistance, but also to provide clues to improving existing radiation resistance through novel therapies based on the above-mentioned mechanism.