• Title/Summary/Keyword: Non-harmonic load

Search Result 101, Processing Time 0.024 seconds

Analysis of Impedance Performance for Condenser by Harmonic Current Source (고조파 전류원에 의한 콘덴서 임피던스 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • Most of the user has been used linear load and non-linear load. The former is usually inductive load which is needed power factor compensation, the latter is power conversion system device. Actually two kinds of load is used together in the customer application. Generally capacitor is used for power-factor compensation of inductive load and reduction harmonics of non linear load with reactor. Non-linear load generates harmonic current for its energy conversion process. If harmonic current pass along the low impedance side of distribution system, the magnification of voltage and current is appeared by the series and parallel resonance. As a result, condenser has received a bitter electrical stress by the harmonic component. In this paper, we analyzed that how resonance is changed by the 5-th harmonic current pattern and proposed an alternative plan for non-magnification.

Analysis and Measurement of Current Harmonics Due to Non-linear Load in Low Voltage System (저압 시스템에서 비선형 부하의 사용에 따른 전류 고조파 해석 및 측정)

  • Kim, Jong-Gyeom;Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.601-608
    • /
    • 2001
  • The ever increasing density of adjustable speed drives(ASD) device with non-linear operating characteristics has been to put tremendous harmonic stress on end user's electrical application. All ASD controllers which employ solid state power devices cause harmonic currents in the source side line. This paper describes harmonic problems for use of ASD. In order to investigate the effect of harmonics caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current waveforms. Measurement results show that additional operation of linear load at the parallel bus with nonlinear load such as ASD is helpful to the reduction of harmonic influence.

  • PDF

A Study on the Harmonic Current Characteristic and Emission Value Assess Method Considering the Linear Load (선형부하가 고려된 고조파 전류 특성 및 방출값 평가)

  • Park, Yong-Up;Choi, Seung-Hoon;Chang, Joon-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.33-39
    • /
    • 2010
  • In order to operate the power system satisfactory for both system operators and customers, it is important to limit the harmonic currents to the allowable levels which injected into the system from the distorting installations. In this regard, the principles for the allocation of emission limits on individual customer were introduced in the technical report of IEC61000-3-6. According to these general principles, the emission limits are dependent on the agreed power of the customer, the power of the harmonic-generating equipment, and the system characteristics. The considerations in this report are very comprehensive and the process introduced is practical enough to implement as it is. However, there is a fact not appropriately dealing in the report that could be a very tickle but has a huge impact on determining the emission limit. This is the effect of non-harmonic load currents. More precisely, these are from the equipments which do not emit any harmonic or may emit harmonics but this specific order under the consideration by themselves if the source power is sinusoidal. The load currents originated from these equipments have an effect of active filter against the specific order of harmonic therefore, these should be dealt as a significant factoron the process of determining the emission limits for individual customer.

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

Characteristics Analysis of Induction Motor by Operation of Non-lineal Loads (비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.147-153
    • /
    • 2006
  • Voltage unbalance will be generated by the load unbalance operation such as combination operation of single & three phase load and current unbalance will be more severe by the deteriorated voltage quality. Under the these unbalance conditions, all power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. it may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration. This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system by the unbalance and harmonic components. It was able to confirm that the number of torque pulsation decreased and torque ripple values increased by the harmonics that reduction was difficult by five harmonics filters at additional driving time of single-phase non-linear load.

  • PDF

Instantaneous Power Compensation of Non-linear Load (비선형 부하의 순시 전력 보상)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Eee, Eun-Woong;Jeong, Jong-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.152-153
    • /
    • 2007
  • industrial site has led to a growing concern for harmonic distortion and the resulting impacts on system equipment and operation. Harmonic current is generated by the operation of non-linear load, it means that voltage and current waveforms exhibit a non-linear relationship. Harmonics cause increase losses in the customer and utility power system components. This paper describes application of instantaneous active and reactive theory for the compensation of harmonic currents in three-phase non-linear load.

  • PDF

Effects of Distributed Load on the Dynamic Response of the Reinforced Concrete Slabs (분포하중이 철근 콘크리트 슬래브의 동적 거동에 미치는 영향)

  • Oh, Kyung-Yoon;Cho, Jin-Goo;Choi, Soo-Myung;Hong, Chong-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.2
    • /
    • pp.19-26
    • /
    • 2008
  • This study has been carried out to investigate the dynamic characteristics of RC slabs. For this purpose, the 20-node solid element has been used to discretize the RC slabs into two parts of concrete and rebar. The material non-linearity considering elasto-visco plastic model and the smeared crack model have been adopted in the finite element formulation. The applied load can handle step load, load intensity of harmonic load, area of distributed load and frequency. The frequency of harmonic load has an significant effect on dynamic behaviour in terms of displacement. As the frequency is increased, the effect of load amplitude is more serious. Especially, if the frequency of harmonic load exceeds 30 Hz, it is noted that the displacement by harmonic load is greater than that by step load. In case of harmonic load, the damping effect shows no certain tendency with respect to frequency of load. In details, the damping is effective when the frequency of harmonic load is 2 Hz, but there is no consistent tendency according to damping ratio. The dynamic response when the frequency of harmonic load is 3 Hz shows same result for undamped case as well as for damped case with 5% damping ratio. It is also noted that we can get the largest deflection for damped case with 1% damping ratio. However, there is not any damping effect when the frequency of harmonic load is greater than 4 Hz.

Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load (불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법)

  • Lee, Wujong;Jo, Jongmin;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

Analysis of harmonics current using non-linear load at low voltage system (저압 시스템에서 비선형 부하의 사용에 따른 고조파 전류 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.13-16
    • /
    • 2001
  • This paper describes the problems associated with the use of PWM ASDs to drive induction motors. A major effect of harmonic voltages and currents in induction motors is increased heating due to iron and copper losses at harmonic frequencies. The harmonic components thus affect the motor efficiency, and can also affect the torque developed. In order to investigate the effect of harmonics which is caused by using of nonlinear load at the low voltage system, we fixed up simple load model and measured the voltage and current. Measurement. results show that additional operation of linear load at the parallel bus in using nonlinear load such as ASD is helpful to the reduction of harmonic current.

  • PDF

Analysis on the Harmonic Characteristics of Nonlinear Load Operated by Unbalance Voltage (불평형 전압으로 운전하는 비선형 부하의 고조파 특성 분석)

  • 김종겸;이은웅;이동주
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.491-500
    • /
    • 2003
  • Most of the loads in industrial power distribution systems are balanced and connected to three wires power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating a large amount of non-characteristic harmonics. With the advent of power electronics and proliferation of non-linear loads in industrial power applications, power harmonics and their effects on power quality are a topic of concern. Harmonics by the unbalance voltage and non-linear loads, cause the increase of machine loss and heating. In order to allow current harmonic compensation, a filter must be installed. This paper describes the performance of passive filter under the voltage unbalance and non-linear load.