• Title/Summary/Keyword: Non-elastic

Search Result 1,039, Processing Time 0.024 seconds

Effect of Ankle Taping Type and Jump Height on Balance during Jump Landing in Chronic Ankle Instability

  • Kim, Mikyoung;Kong, Byungsun;Yoo, Kyungtae
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2077-2089
    • /
    • 2020
  • Background: Chronic ankle instability is a common injury that decreases balance and negatively affects functional movements, such as jumping and landing. Objectives: To analyze the effect of taping types and jump heights on balance with eyes open and closed during jump landings in chronic ankle instability. Design: Within-subject design. Methods: The study involved 22 patients with chronic ankle instability. They performed both double-leg and single-leg drop jump landings using three conditions (elastic taping, non-elastic taping, and barefoot) on three different jump platforms (30, 38, and 46 cm). Balance was measured using the Romberg's test with eyes open and closed. Results: Interaction effect was not statistically significant. Balance with eyes open and closed was significantly improved in both the elastic taping and non-elastic taping conditions compared to the barefoot condition. There was no significant difference according to the jump height. Conclusion: Individuals with chronic ankle instability demonstrated increased balance ability with eyes open and closed when jump landing. Elastic taping and non-elastic taping on the ankle joint can positively affect balance during landing in individuals with chronic ankle instability.

Comparison of the Effects of Non-elastic Taping on Patellar tendon Pain, Knee Muscle Strength and Gait in Patients with Patellofemoral Joint Pain Syndrome (비탄력 테이핑이 슬개대퇴관절 통증증후군 환자의 슬개건 통증과 슬관절부 근력, 보행에 미치는 영향 비교)

  • Jung, Sang-mo;Jung, Young-jun;Ahn, Seung-won
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.39-46
    • /
    • 2019
  • Background: Ground repulsion or impact on the ground during daily activities, sports, or occupational activities may cause injury to the knee when walking. Non-elastic taping is effective in treating these problems in previous studies. Non-elastic taping strengthens the structure of the soft tissues of the injured knee joint to maintain constant tension, improves muscle rearrangement and function, and improves proprioception. Based on previous studies, we intended to see the therapeutic changes of non-elastic taping in patients with patellofemoral joint pain syndrome. Methods: The non-elastic taping application method was applied to the patient three times for five hours for one week. Non-elastic taping was applied to the patellar tendon with little space above the skin segment of the patellar femur, with both sides fixed by taping. Muscle strength and gait change were evaluated with non-elastc taping. Results: The knee flexion, extension strength and gait evaluation of the knee joint with inelastic taping showed significant differences after treatment. There was a significant difference in the comparison between the two groups after the treatment method was applied (p<.05). Conclusion: As a result, this study confirms that the non-elastic taping method applied for the treatment of patellar femoral joint pain syndrome is effective in the treatment.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

The Effects of Extensor Pattern Position and Elastic Taping of Non-Dominant Hand on the Grip Strength of Dominant Hand

  • Lee, Jung-Hoon;Yoo, Won-Gyu;An, Duk-Hyun
    • Physical Therapy Korea
    • /
    • v.16 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • Grip strength is an objective indicator for evaluating the functional movement of upper extremities. Therapists have been using it for a long time as an excellent barometer for evaluating the therapy process, therapeutic effects and prognosis of patients with injuries in upper extremities. This study investigated the effects of extensor pattern position and elastic taping of non-dominant hand on the grip strength of dominant hand among general adults. The subjects of this study were 23 males and 7 females from physical therapy departments of 3 Universities located in Busan who agreed to participate in the experiment and the resultant data were analyzed using SPSS version 12.0. The results of the study were as follows. First, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously (Bonferroni-corrected p<.001). Second, there was a significant difference between the grip strength of dominant hand when the non-dominant hand was at the neutral position and that when the elastic taping of non-dominant hand was applied (Bonferroni-corrected p<.001). Third, there was no significant difference between the grip strength of dominant hand when the non-dominant hand was at the extensor pattern position and both hands were at the maximum strength simultaneously and that when the elastic taping of non-dominant hand was applied. The irradiation effects through the extensor pattern position of non-dominant hand and application of the elastic taping to non-dominant hand showed significant results in improving the maximum grip strength of dominant hand. This finding could be suggested as the probability for the indirect treatment of the upper extremities of hemiplegia and orthopedic patients due to the long-term fixing of upper extremities.

  • PDF

Free Vibrations of Curved Beams on Non-homogeneous Elastic Foundation (비균질 탄성지반 위에 놓인 곡선보의 자유진동)

  • 이병구;이태은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.989-993
    • /
    • 2001
  • This paper deals with the free vibrations of horizontally curved beams supported by non-homogeneous elastic foundation. Taking into account the effects of rotatory inertia and shear deformation, differential equations governing the free vibrations of such beams are derived, in which the linear elastic foundation is considered as the non-homogeneous foundation. Differential equations are solved numerically to calculate natural frequencies. In numerical examples, the parabolic curved member is considered. The parametric studies are conducted and the lowest four frequency parameters are reported in tables and figures as the non-dimensional forms.

  • PDF

Non-linear Large Deformation Analysis of Elastic Rubber Mount (고무 재질 탄성 마운트의 비선형 대변형 거동 해석)

  • Nho, In-Sik;Kim, Jong-Man;Kwak, Jeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory

  • Bensattalah, Tayeb;Zidour, Mohamed;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.163-174
    • /
    • 2018
  • This article studies the free and forced vibrations of the carbon nanotubes CNTs embedded in an elastic medium including thermal and dynamic load effects based on nonlocal Euler-Bernoulli beam. A Winkler type elastic foundation is employed to model the interaction of carbon nanotube and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The non-local Euler-Bernoulli beam model predicts lower resonance frequencies. The research work reveals the significance of the small-scale coefficient, the vibrational mode number, the elastic medium and the temperature change on the non-dimensional natural frequency.

Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation

  • Javanmard, Mehran;Bayat, Mahdi;Ardakani, Alireza
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.439-449
    • /
    • 2013
  • In this study simply supported nonlinear Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads is investigated. A new kind of analytical technique for a non-linear problem called He's Energy Balance Method (EBM) is used to obtain the analytical solution for non-linear vibration behavior of the problem. Analytical expressions for geometrically non-linear vibration of Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads are provided. The effect of vibration amplitude on the non-linear frequency and buckling load is discussed. The variation of different parameter to the nonlinear frequency is considered completely in this study. The nonlinear vibration equation is analyzed numerically using Runge-Kutta $4^{th}$ technique. Comparison of Energy Balance Method (EBM) with Runge-Kutta $4^{th}$ leads to highly accurate solutions.

Initial Effects of the Non-elastic Taping Technique on Grip Strength and EMG in Female with Lateral Epicondylalgia (테니스 엘보를 가진 성인 여성의 비탄력성 테이핑 후 악력과 근활성도의 초기 변화 연구)

  • Park, Jin-Hyun;Kim, Kyoung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.525-533
    • /
    • 2012
  • PURPOSE: The purpose of this study was to investigate initial effects of the non-elastic taping technique on grip strength and EMG in female with lateral epicondylalgia. METHODS: Twenty-two participants (mean age SD, $52.8{\pm}10.2$ years) with chronic lateral epicondylalgia (mean duration${\pm}$SD, $13.1{\pm}9.9$ months) participated in a placebo control study of an elbow taping technique. Outcome measures were pain-free grip and EMG taken before, immediately after application of tape. RESULTS: The experimental group were more significantly improved grip strength and muscle activity of forearm than control group. CONCLUSION: This study show that non-elastic taping technique is beneficial intervention for increase grip strength and EMG in female with lateral epicondylalgia.