• Title/Summary/Keyword: Non-dimensional coefficients

Search Result 102, Processing Time 0.025 seconds

Thickness stretching and nonlinear hygro-thermo-mechanical loading effects on bending behavior of FG beams

  • Faicel, Khadraoui;Abderahmane, Menasria;Belgacem, Mamen;Abdelhakim, Bouhadra;Fouad, Bourada;Soumia, Benguediab;Kouider Halim, Benrahou;Mohamed, Benguediab;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.783-798
    • /
    • 2022
  • This study attempts to investigate the impact of thickness stretching and nonlinear hygro-thermo-mechanical loading on the bending behavior of FG beams. Young's modulus, thermal expansion, and moisture concentration coefficients vary gradually and continuously according to a power-law distribution in terms of the volume fractions of the constituent materials. In addition, the interaction between the thermal, mechanical, and moisture loads is involved in the governing equilibrium equations. Using the present developed analytical model and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are compared with those obtained by other 3D theories. Furthermore, the present analytical model is appropriate for investigating the static bending of FG beams exposed to intense hygro-thermo-mechanical loading used for special technical applications in aerospace, automobile, and civil engineering constructions.

Syllable Recognition of HMM using Segment Dimension Compression (세그먼트 차원압축을 이용한 HMM의 음절인식)

  • Kim, Joo-Sung;Lee, Yang-Woo;Hur, Kang-In;Ahn, Jum-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.40-48
    • /
    • 1996
  • In this paper, a 40 dimensional segment vector with 4 frame and 7 frame width in every monosyllable interval was compressed into a 10, 14, 20 dimensional vector using K-L expansion and neural networks, and these was used to speech recognition feature parameter for CHMM. And we also compared them with CHMM added as feature parameter to the discrete duration time, the regression coefficients and the mixture distribution. In recognition test at 100 monosyllable, recognition rates of CHMM +${\bigtriangleup}$MCEP, CHMM +MIX and CHMM +DD respectively improve 1.4%, 2.36% and 2.78% over 85.19% of CHMM. And those using vector compressed by K-L expansion are less than MCEP + ${\bigtriangleup}$MCEP but those using K-L + MCEP, K-L + ${\bigtriangleup}$MCEP are almost same. Neural networks reflect more the speech dynamic variety than K-L expansion because they use the sigmoid function for the non-linear transform. Recognition rates using vector compressed by neural networks are higher than those using of K-L expansion and other methods.

  • PDF

An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate (연직수문의 퇴적토 배출특성에 관한 실험적 연구)

  • Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In order to analyze sediment transport characteristics of knickpoint migration, sediment transport length, and sediment transport weight through the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and sediment transport characteristics were schematized. The multiple regression formulae for sediment transport characteristics with non-dimensional parameters were suggested. The determination coefficients of multiple regression equations appeared high as 0.618 for knickpoint migration, 0.632 for sediment transport length, and 0.866 for sediment transport weight. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by multiple regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on sediment transport characteristics of kickpoint migration, sediment transport length and weight.

The Reinforcing Effect of Blade Attached Pile to Support Submerged Breakwater (보강날개로 보강된 수중잠제 지지말뚝의 보강효과 분석)

  • Jeong, Sangseom;Hong, Moonhyun;Ko, Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.863-874
    • /
    • 2015
  • The use of pile reinforcement is considered as one of the most promising techniques for improving load carrying capacity of piles in offshore area. In this study, to consider the horizontal and uplift bearing capacity of submerged breakwater bearing pile, exclusive analysis on load-transfer behaviour of pile was conducted. First of all, check the reinforcing effect from the three-dimensional finite element method, and estimate load transfer curve (ground reaction force). Based on these results, the reinforcing effect was quantified by estimating the coefficients of horizontal and uplift reinforcement of reinforced piles. Load transfer function with consideration of the reinforcing effect was proposed from estimated coefficients. A comparison of the analysis using the proposed load transfer function with three-dimensional finite element analysis has resulted that the proposed load transfer function is displaying good accuracy of predicting behavior of the load transfer between the pile and soil reinforcement. Interpretation of the submerged structure by applying a load transfer function considering the reinforcing effect, has shown that the reinforced pile's shear, bending moment and displacement are less than that of non-reinforced piles, while the subgrade reaction modulus arises greater. Thus, it is expected to be relatively cost effective in terms of design.

Laryngeal Cancer Screening using Cepstral Parameters (켑스트럼 파라미터를 이용한 후두암 검진)

  • 이원범;전경명;권순복;전계록;김수미;김형순;양병곤;조철우;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.14 no.2
    • /
    • pp.110-116
    • /
    • 2003
  • Background and Objectives : Laryngeal cancer discrimination using voice signals is a non-invasive method that can carry out the examination rapidly and simply without giving discomfort to the patients. n appropriate analysis parameters and classifiers are developed, this method can be used effectively in various applications including telemedicine. This study examines voice analysis parameters used for laryngeal disease discrimination to help discriminate laryngeal diseases by voice signal analysis. The study also estimates the laryngeal cancer discrimination activity of the Gaussian mixture model (GMM) classifier based on the statistical modelling of voice analysis parameters. Materials and Methods : The Multi-dimensional voice program (MDVP) parameters, which have been widely used for the analysis of laryngeal cancer voice, sometimes fail to analyze the voice of a laryngeal cancer patient whose cycle is seriously damaged. Accordingly, it is necessary to develop a new method that enables an analysis of high reliability for the voice signals that cannot be analyzed by the MDVP. To conduct the experiments of laryngeal cancer discrimination, the authors used three types of voices collected at the Department of Otorhinorlaryngology, Pusan National University Hospital. 50 normal males voice data, 50 voices of males with benign laryngeal diseases and 105 voices of males laryngeal cancer. In addition, the experiment also included 11 voices data of males with laryngeal cancer that cannot be analyzed by the MDVP, Only monosyllabic vowel /a/ was used as voice data. Since there were only 11 voices of laryngeal cancer patients that cannot be analyzed by the MDVP, those voices were used only for discrimination. This study examined the linear predictive cepstral coefficients (LPCC) and the met-frequency cepstral coefficients (MFCC) that are the two major cepstrum analysis methods in the area of acoustic recognition. Results : The results showed that this met frequency scaling process was effective in acoustic recognition but not useful for laryngeal cancer discrimination. Accordingly, the linear frequency cepstral coefficients (LFCC) that excluded the met frequency scaling from the MFCC was introduced. The LFCC showed more excellent discrimination activity rather than the MFCC in predictability of laryngeal cancer. Conclusion : In conclusion, the parameters applied in this study could discriminate accurately even the terminal laryngeal cancer whose periodicity is disturbed. Also it is thought that future studies on various classification algorithms and parameters representing pathophysiology of vocal cords will make it possible to discriminate benign laryngeal diseases as well, in addition to laryngeal cancer.

  • PDF

Feasibility of Three-Dimensional Balanced Steady-State Free Precession Cine Magnetic Resonance Imaging Combined with an Image Denoising Technique to Evaluate Cardiac Function in Children with Repaired Tetralogy of Fallot

  • YaFeng Peng;XinYu Su;LiWei Hu;Qian Wang;RongZhen Ouyang;AiMin Sun;Chen Guo;XiaoFen Yao;Yong Zhang;LiJia Wang;YuMin Zhong
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1525-1536
    • /
    • 2021
  • Objective: To investigate the feasibility of cine three-dimensional (3D) balanced steady-state free precession (b-SSFP) imaging combined with a non-local means (NLM) algorithm for image denoising in evaluating cardiac function in children with repaired tetralogy of Fallot (rTOF). Materials and Methods: Thirty-five patients with rTOF (mean age, 12 years; range, 7-18 years) were enrolled to undergo cardiac cine image acquisition, including two-dimensional (2D) b-SSFP, 3D b-SSFP, and 3D b-SSFP combined with NLM. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) of the two ventricles were measured and indexed by body surface index. Acquisition time and image quality were recorded and compared among the three imaging sequences. Results: 3D b-SSFP with denoising vs. 2D b-SSFP had high correlation coefficients for EDV, ESV, SV, and EF of the left (0.959-0.991; p < 0.001) as well as right (0.755-0.965; p < 0.001) ventricular metrics. The image acquisition time ± standard deviation (SD) was 25.1 ± 2.4 seconds for 3D b-SSFP compared with 277.6 ± 0.7 seconds for 2D b-SSFP, indicating a significantly shorter time with the 3D than the 2D sequence (p < 0.001). Image quality score was better with 3D b-SSFP combined with denoising than with 3D b-SSFP (mean ± SD, 3.8 ± 0.6 vs. 3.5 ± 0.6; p = 0.005). Signal-to-noise ratios for blood and myocardium as well as contrast between blood and myocardium were higher for 3D b-SSFP combined with denoising than for 3D b-SSFP (p < 0.05 for all but septal myocardium). Conclusion: The 3D b-SSFP sequence can significantly reduce acquisition time compared to the 2D b-SSFP sequence for cine imaging in the evaluation of ventricular function in children with rTOF, and its quality can be further improved by combining it with an NLM denoising method.

Evaluation of Aluminum and Copper Biosorption in Two-Metal System using Algal Biosorbent

  • Lee, Hak-Sung;Volesky, Bohumil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.2
    • /
    • pp.149-158
    • /
    • 1998
  • Biomass of non-living brown seaweed Sargassun fluitans pretreated with NaOH is capable of taking up more than $10\%$ $(q_{max}$ : 3.85 mmol/g for Al and 1.48 mmol/g for Cu) of its dry weight in the Al and Cu at pH of 4.5. However, the maximum Al and Cu uptakes calculated from Langmuir isotherm were 1.58 mmol/g for Al and 1.35 mmol/g for Cu at pH 3.5. Equilibrium batch sorption study was performed using two-metal system containing Al and Cu. The mathematical model of the two-metal sorption system enabled quantitative estimation of one-metal biosorption inhibition due to the influence of a second metal. NaOH-treated S. fluitans contained 2.19 mmol $(43\;wt.\%)$ carboxyl groups per gram of biomass. A modified form of Langmuir, which assumes binding of Cu as $Cu^{2+}$ and Al as $Al(OH)_2^+,$ was used to model the experimental data. This result agrees with the one of mono-valent sorption for Al in single-metal system. The modified Langmuir model gives the following affinity correlated coefficients: 0.196 for Cu and 6.820 for Ah at pH 4.5, and 2.904 for Cu and 3.131 for Al at pH 3.5. The interference of Al in Cu biosorptive uptake was assessed by `cutting' the three dimensional uptake isotherm surfaces at constant second-metal final concentrations. Equimolar final equilibrium concentrations of Cu and Al of 1 mM at pH 4.5 give Cu and hi uptakes reduced by $82.5\%\;and\;5.4\%,$ respectively. However, these values at pH 3.5 were $55\%\;(Cu)\;and\;31\%$ (Al).

  • PDF

Experiments for Amour Stability of Low Crested Structure Covered by Tetrapods (저 마루높이 구조물의 피복재 안정성 실험: Tetrapod 피복 조건)

  • Lee, Jong-In;Bae, Il Rho;Moon, Gang Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.769-777
    • /
    • 2019
  • Low crested coastal structures such as detached breakwaters and submerged breakwaters (artificial reefs) have been commonly used as coastal protection measures. The armour units of these structures are unstable than those in non-overtopped structure cases. The stability of low crested structures armoured by rock has been suggested in existing studies. In this study, the stability of Tetrapods armour units on theses structures has been investigated using two-dimensional hydraulic model tests. The effect of wave steepness and freeboard on the armour stability on crest, front, and the rear slope has been investigated. Armour units were mostly damaged near the upper part of the seaward slope and the crest of the seaward side. From the experimental data, the new empirical formula for the stability coefficients of the Tetrapods was proposed.

Experimental Investigation on the Hydraulic Performance of the Regenerative Pump According to the Blade Angle (재생 펌프의 날개 각도에 따른 성능 변화에 관한 실험적 연구)

  • Yoo, Il Su;Choi, Won Chul;Park, Mu Ryong;Lee, Gong Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.5-10
    • /
    • 2013
  • The regenerative pump is a kind of turbomachine which is capable of developing high pressure rise at relatively lower flow rates compared to the centrifugal and axial pumps. Although the efficiency of regenerative pumps is much lower than other turbomachines, still they have been widely used in many industrial applications for working at low specific speeds. There are some theoretical models to analysis the pump performance, however, the effect of the blade angle on the pump performance has not been covered in any model to date. In the present study, experimental study on the regenerative pump performance according to the impeller blade angle and its shape has been carried out. The straight radial blades with forward, backward and chevron blades which have inclined angles of $15^{\circ}$, $30^{\circ}$ and $45^{\circ}$ were tested. The pump performance characteristics as the pressure head, efficiency were obtained depending on the flow rate for every impeller, and their results, expressed in appropriate non-dimensional coefficients, were compared and analysed in detail. From the experimental results, it was found that the pressure head and the efficiency depend strongly on the blade angles as well as the blade type. These experimental data has made it possible to better understand the effects of the blade angle on the pump performance, and widen the applicability of the current performance analysis and design models with including the effect of blade angles.

Objective Estimation of Velocity Streamfunction Field with Discretely Sampled Oceanic Data 11: with Application of Least-square Regression Analysis (객관적 분석을 통한 속도 유선함수(streamfunction) 산출 II: 최소자승 회귀분석법의 응용)

  • 조광우
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.541-550
    • /
    • 1997
  • A least-square regression analysis is applied for the estimation of velocity streamfunction field based on discretely sampled current meter data. The coefficients of a streamfuunction that is expanded in terms of trigonometric basis function are obtained by enforcing the horizontal non-divergence of two-dimensional flow field. This method avoids Interpolation and gives a root-mean-square (rms) residual of fit which Includes the divergent part and noisiness of oceanic data. The Implementation of the method Is done by employing a boundary-fitted, curvilinear orthogonal coordinate which facilitates the specification of boundary conditions. An application is successfully made to the Texas-Louisiana shelf using the 32 months current meter data (31 moorings) observed as a part of the Texas-Louisiana Shelf and Transport Processes Study (LATEX). The rms residual of the fitting is relatively small for the shelf, which indicates the field Is Ivell represented by the streamnfunction.

  • PDF