• Title/Summary/Keyword: Non-dimensional coefficients

Search Result 102, Processing Time 0.023 seconds

A Study on the Correction of tens Distortion by Plumb tine Method (Plumb Line Method에 의한 렌즈왜곡보정에 관한 연구)

  • 강준묵;오원진;윤희천
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 1989
  • Lens distortion would produce image displacement, therefore correction of lens distortion is required urgently to improve accuracy of results in photogrammetry. The objective of this study is to find out lens distortion coefficients versus focussing distance on non-metric and metric camera and to investigate propriety of application of lens distortion coefficients to three dimensional analysis. Analytical plumb line method which needs not perform control survey and space resection and requires only one photograph was used in order to get lens distortion coefficients. As the result of this study, the coefficients of radial and tangential distortion change as focussing distance changes, and consequently it is reasonable to apply the eigenvalues of lens distortion coefficients according to focussing distance. When these coefficients were applied to actual measurement, standard errors decreased about 30% or 76% remarkably.

  • PDF

Performance Analysis on the Various Shapes of Symmetric Fins (여러 형상의 대칭적인 핀의 성능 해석)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.97-104
    • /
    • 1996
  • A comparison of the fin effectiveness, thermal resistance, and fin efficiency between the symmetric triangular fin and the symmetric trapezoidal fin which has various slopes of the fin side is made. Also the relation between Biot number and the non-dimensional fin length for equal amount of heat loss from these fins is shown. For these analyses, a forced analytic method is used. In particular, the equation for the heat loss is used simultaneously for both the symmetric triangular fin and the symmetric trapezoidal fins by just adjusting the value of the slope factor. The value of Biot number varies from 0.01 to 1.0 and the non-dimensional fin length varies from 0.01 to 10. For simplicity, the root temperature and fin's surrounding convection coefficients are assumed constant and the condition is assumed to be steady state.

  • PDF

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

Behavior of symmetrically haunched non-prismatic members subjected to temperature changes

  • Yuksel, S. Bahadir
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.297-314
    • /
    • 2009
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. Therefore, this study aimed to investigate the modeling, analysis and behavior of the non-prismatic members subjected to temperature changes with the aid of finite element modeling. The fixed-end moments and fixed-end forces of such members due to temperature changes were computed through a comprehensive parametric study. It was demonstrated that the conventional methods using frame elements can lead to significant errors, and the deviations can reach to unacceptable levels for these types of structures. The design formulas and the dimensionless design coefficients were proposed based on a comprehensive parametric study using two-dimensional plane-stress finite element models. The fixed-end actions of the non-prismatic members having parabolic and straight haunches due to temperature changes can be determined using the proposed approach without necessitating a detailed finite element model solution. Additionally, the robust results of the finite element analyses allowed examining the sources and magnitudes of the errors in the conventional analysis.

Algorithm of solving the problem of small elastoplastic deformation of fiber composites by FEM

  • Polatov, Askhad M.;Khaldjigitov, Abduvali A.;Ikramov, Akhmat M.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.305-321
    • /
    • 2020
  • In this paper is presented the solution method for three-dimensional problem of transversely isotropic body's elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of the body configuration, including the determination of the local minimum value of the tape width of non-zero coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load vector node components of the equation for an individual finite element's state according to the theory of small elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of symmetric-tape equations systems by means of the square root method; calculation of the body's elastoplastic stress-strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective computational algorithms have been developed that reduce computational operations number by modifying existing solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem solution of fibrous composite straining in the form of a rectangle with a system of circular holes.

Numerical Analysis of Extrusion Processes of Particle Filled Plastic Materials Subject to Slip at the Wall (미끄럼현상을 갖는 입자충전 플라스틱재료의 압출공정 수치해석)

  • 김시조;권태헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2585-2596
    • /
    • 1994
  • Many particle filled materials like Poweder/Binder mixtures for poweder injection moldings, have complicated rheological behaviors such as an yield stress and slip phenomena. In the present study, numerical simulation programs via a finite element method and a finite difference method were developed for the quasi-three-dimensional flows and the two-dimensional flow models, respectively, with the slip phenomena taken into account in terms of a slip velocity. In order to qualitatively understand the slip effects, typical numerical results such as vector plots, pressure contours in the cross-channel plane, and isovelocity controus for the down-channel direction were discussed with respect to various slip coefficients. Slip velocities along the boudary surfaces were also investigated to find the effects of the slip coefficient and processing conditions on the overall flow behavior. Based on extensive numerical calculations varying the slip coefficients, pressure gradient, aspect ratio, and power law index, the screw characteristics of the extrusion process were studied in particular with comparisons between the slip model and non-slip model.

Design of video encoder using Multi-dimensional DCT (다차원 DCT를 이용한 비디오 부호화기 설계)

  • Jeon, S.Y.;Choi, W.J.;Oh, S.J.;Jeong, S.Y.;Choi, J.S.;Moon, K.A.;Hong, J.W.;Ahn, C.B.
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.732-743
    • /
    • 2008
  • In H.264/AVC, 4$\times$4 block transform is used for intra and inter prediction instead of 8$\times$8 block transform. Using small block size coding, H.264/AVC obtains high temporal prediction efficiency, however, it has limitation in utilizing spatial redundancy. Motivated on these points, we propose a multi-dimensional transform which achieves both the accuracy of temporal prediction as well as effective use of spatial redundancy. From preliminary experiments, the proposed multi-dimensional transform achieves higher energy compaction than 2-D DCT used in H.264. We designed an integer-based transform and quantization coder for multi-dimensional coder. Moreover, several additional methods for multi-dimensional coder are proposed, which are cube forming, scan order, mode decision and updating parameters. The Context-based Adaptive Variable-Length Coding (CAVLC) used in H.264 was employed for the entropy coder. Simulation results show that the performance of the multi-dimensional codec appears similar to that of H.264 in lower bit rates although the rate-distortion curves of the multi-dimensional DCT measured by entropy and the number of non-zero coefficients show remarkably higher performance than those of H.264/AVC. This implies that more efficient entropy coder optimized to the statistics of multi-dimensional DCT coefficients and rate-distortion operation are needed to take full advantage of the multi-dimensional DCT. There remains many issues and future works about multi-dimensional coder to improve coding efficiency over H.264/AVC.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

Determination of Residual Stress by the Hole Drilling Method Based on Displacement Measurement (변위 측정을 기본으로 한 구멍뚫기방법에 의한 잔류응력 측정 방법)

  • Shin, Dong Il;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1542-1550
    • /
    • 2005
  • This paper presents the numerical procedure for calculating non-uniform residual stresses based on relieved displacements obtained from incremental hole drilling. The relationship between the in-plane displacement produced by introducing a blind hole and the corresponding residual stress is established. Finite element calculations are described to evaluate the relieved coefficients required for the determination of non-uniform residual stresses. Validity of the proposed method has been tested through three axisymmetric test examples and two three-dimensional examples. As a result of . simulation on the test examples, it is found that this numerical procedure is well adopted to measuring non-uniform residual stress in the full hole depth range of the hole diameter from the surface. The accuracy of the hole drilling method with displacement measurement is discussed, comparing tile method with strain measurement