• Title/Summary/Keyword: Non-destructive testing

Search Result 532, Processing Time 0.029 seconds

Comparison of FEA with Condition Monitoring for Real-Time Damage Detection of Bearing Using Infrared Thermography Techniques (적외선열화상을 이용한 베어링 실시간 손상검출 상태감시의 전산수치해석 비교)

  • Kim, Hojong;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.3
    • /
    • pp.185-192
    • /
    • 2015
  • Since real-time monitoring systems, such as early fault detection, have been very important, an infrared thermography technique was proposed as a new diagnosis method. This study focused on damage detection and temperature characteristic analysis of ball bearings using the non-destructive, infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with finite element analysis (FEA) results from ANSYS. In this investigation, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally, it was confirmed that the infrared thermography technique was useful for the real-time detection of damage to bearings.

Quantitative nondestructive evaluation of thin plate structures using the complete frequency information from impact testing

  • Lee, Sang-Youl;Rus, Guillermo;Park, Tae-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.525-548
    • /
    • 2008
  • This article deals the theory for solving an inverse problem of plate structures using the frequency-domain information instead of classical time-domain delays or free vibration eigenmodes or eigenvalues. A reduced set of output parameters characterizing the defect is used as a regularization technique to drastically overcome noise problems that appear in imaging techniques. A deconvolution scheme from an undamaged specimen overrides uncertainties about the input signal and other coherent noises. This approach provides the advantage that it is not necessary to visually identify the portion of the signal that contains the information about the defect. The theoretical model for Quantitative nondestructive evaluation, the relationship between the real and ideal models, the finite element method (FEM) for the forward problem, and inverse procedure for detecting the defects are developed. The theoretical formulation is experimentally verified using dynamic responses of a steel plate under impact loading at several points. The signal synthesized by FEM, the residual, and its components are analyzed for different choices of time window. The noise effects are taken into account in the inversion strategy by designing a filter for the cost functional to be minimized. The technique is focused toward a exible and rapid inspection of large areas, by recovering the position of the defect by means of a single accelerometer, overriding experimental calibration, and using a reduced number of impact events.

Size Estimation of Concrete Structures Using the Impact Echo Method

  • Hong, Seong-Uk;Yoon, Sang-Ki;Lee, Yong-Taeg;Kim, Seung-Hun
    • Architectural research
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2020
  • This study aims to verify a method for accurately estimating the sizes of the column, slab, and beam members of concrete structures using the impact echo method, which is a nondestructive testing method. The concrete specimens are designed and fabricated with six single-layer frame specimens composed of columns, slabs, and beam members based on three strengths of 24, 30, and 40 MPa. To estimate the sizes of the members according to the member types of concrete structures, the experiment was performed using the impact echo method. As a result of estimating the sizes of the concrete column members using the impact echo method, the error rate is 2.9%. As a result of estimating the depth of the concrete beam members, the error rate is 9.7%. And, as a result of estimating the thickness of the concrete slab members, the error rate is 2.4%. These results confirmed that quality control of the members of concrete structures is possible by estimating their sizes using a non-destructive testing method.

Measurement of a Mirror Surface Topography Using 2-frame Phase-shifting Digital Interferometry

  • Jeon, Seok-Hee;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2009
  • We propose a digital holographic interference analysis method based on a 2-frame phase-shifting technique for measuring an optical mirror surface. The technique using 2-frame phase-shifting digital interferometry is more efficient than multi-frame phase-shifting techniques because the 2-frame method has the advantage of a reduced number of interferograms, and then takes less time to acquire the wanted topography information from interferograms. In this measurement system, 2-frame phase-shifting digital interferograms are acquired by moving the reference flat mirror surface, which is attached to a piezoelectric transducer, with phase step of 0 or $\pi$/2 in the reference beam path. The measurements are recorded on a CCD detector. The optical interferometry is designed on the basis of polarization characteristics of a polarizing beam splitter. Therefore the noise from outside turbulence can be decreased. The proposed 2-frame algorithm uses the relative phase difference of the neighbor pixels. The experiment has been carried out on an optical mirror which flatness is less than $\lambda$/4. The measurement of the optical mirror surface topography using 2-frame phase-shifting interferometry shows that the peak-to-peak value is calculated to be about $0.1779{\mu}m$, the root-mean-square value is about $0.034{\mu}m$. Thus, the proposed method is expected to be used in nondestructive testing of optical components.

The Estimation of Neutron Fluence in Nuclear Reactor Vessel Materials by the Analysis of Ultrasonic Characteristics (초음파특성 분석에 의한 원자로 재료의 중성자 조사량 예측)

  • Lee, Sam-Lai;Chang, Kee-Ok;Kim, Byoung-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.307-312
    • /
    • 2001
  • Ultrasonic signals from Charpy impact test specimen have been analyzed in order to evaluate the integrity of reactor pressure vessel. Base and weld metal that were extracted from reactor vessel doting plant outages according to the schedule of the surveillance test required by the related regulations have been used and the ultrasonic test parameters including velocity, attenuation, etc. showed a close correlations with the amount of neutron irradiation for base metal, relatively homogeneous materials. This result showed certain possibility where a nondestructive method could be used to predict the fluence of the Irradiation due to neutron in nuclear reactor vessel materials.

  • PDF

State of the Art in Life Assessment for High Temperature Components Using Replication Method (표면복제기법을 이용한 고온 설비의 수명평가 현황과 적용사례)

  • Kim, Duck-Hee;Choi, Hyun-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.489-496
    • /
    • 2010
  • The power generation and chemical industry have been subjected to further material degradation with long term operations and need to predict the remaining service life of components, such as reformer tube and steam turbine rotor, that have operated at elevated temperatures. As a non-destructive technique, replication method with reliable metallurgical life and microstructural soundness assessment has been recognized with strongly useful method until now. Developments of this method have variously accomplished by new quantitative approach, such as carbide analysis, with A-parameter and grain deformation method. An overview of replication, some new techniques for material degradation and life assessment were introduced in this paper. Also, on-site applications and its reasonableness were described. As a result of having analyzed microstructure by replication method, carbide approach was quantitatively useful to life assessment.

A Study on Real-Time Fault Monitoring Detection Method of Bearing Using the Infrared Thermography (적외선 열화상을 이용한 베어링의 실시간 고장 모니터링 검출기법에 관한 연구)

  • Kim, Ho-Jong;Hong, Dong-Pyo;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.330-335
    • /
    • 2013
  • Since real-time monitoring system like a fault early detection has been very important, infrared thermography technique as a new diagnosis method was proposed. This study is focused on the damage detection and temperature characteristic analysis of ball bearing using the non-destructive infrared thermography method. In this paper, for the reliability assessment, infrared experimental data were compared with the frequency data of the existing. As results, the temperature characteristics of ball bearing were analyzed under various loading conditions. Finally it was confirmed that the infrared technique was useful for real-time detection of the bearing damages.

Detection and Comparison of Surface Defects in Pipe Welds (배관 용접부 표면결함 검출 및 비교)

  • Jung, Yoon-Soo;Gao, Jia-Chen;Ahn, Tae-Hyoung;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • At present, 24 nuclear power plants are in operation nationwide as the main power source responsible for about 27% of Korea's electricity, and five nuclear power plants are currently under construction. Issues of nuclear safety and reliability have always existed, but after the Fukushima accident, ensuring reliability has become an even more important issue for safety. Compared to other kinds of accidents, the initial response after a nuclear accident is more important than any other accident. Prior to accidents, it is important to be able to predict and judge the accident in advance for the sake of prevention. In this research, non-destructive inspection methods for existing pipe welds include radiographic, ultrasonic, magnetic particle practice, and liquid penetration testing. For this experiment, carbon steel pipes like that of the material used in nuclear pipes were adopted, and specimen welded to the flange (Flange) were manufactured. After testing, the weld specimen were not damaged through the infrared thermography (IRT) experiment. This study attempted to improve the safety of carbon steel pipes through a comparative analysis of finite element analysis.

Influence of Compressive Stress in TGO Layer on Impedance Spectroscopy from TBC Coatings

  • Kang, To;Zhang, Jianhai;Yuan, Maodan;Song, Sung-Jin;Kim, Hak-Joon;Kim, Yongseok;Seok, Chang Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.46-53
    • /
    • 2013
  • Impedance spectroscopy is a non-destructive evaluation (NDE) method first proposed and developed for evaluating TGO layers with compressive stress inside thermally degraded plasma-sprayed thermal barrier coatings (PS TBCs). A bode plot (phase angle (h) vs. frequency (f)) was used to investigate the TGO layer on electrical responses. In our experimental study, the phase angle of Bode plots is sensitive for detecting TGO layers while applying compressive stress on thermal barrier coatings. It is difficult to detect TGO layers in samples isothermally aged for 100 hrs and 200 hrs without compressive stress, and substantial change of phase was observed these samples with compressive stress. Also, the frequency shift of the phase angle and change of the phase angle are observed in samples isothermally aged for more than 400 hrs.

Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction (카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식)

  • Lee, Won;Yoon, In-Sik;Lee, Byung-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF