• Title/Summary/Keyword: Non-contact Sensing

Search Result 74, Processing Time 0.028 seconds

Analysis of the Principle and Operation Characteristics of an (Igc-Free ELB) Operated by an Active Component (유효성분 동작형 누전차단기(Igc Free ELB)의 원리 및 동작 특성 해석)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.456-461
    • /
    • 2010
  • This study compares the criteria of earth leakage breakers (ELB) and analyzes the characteristics of an Igc-free ELB operated by an active component which is not misoperated by capacitive current. Even for the same ELB, the earth leakage current flowing through the human body is estimated to be differ greatly depending on the power source, voltage, location and status of contact, contact time duration, etc. Earth leakage breakers are classified based on the rated voltage, rated sensing current, rated operating time etc. Mounting and demounting of the existing equipment can be performed easily since an $I_{gc}$-free ELB is manufactured with the same structure as a conventional ELB. The rated operating current of a conventional and an $I_{gc}$-free ELB is 30mA, the sensing current is 25mA and the rated non-operating current is 15mA. In the analysis of non-operating current characteristics, the rated non-operating current of 15mA was satisfied up to a 20mA charging current in the conventional ELB, but does not satisfy the rated non-operating current as it operates when the resistive leakage current is lower than 15mA for a charging current exceeding 20mA. Also, the ELB is misoperated without a resistive leakage current when the charging current exceeded 25mA. However, the newly developed $I_{gc}$-free ELB satisfied the rated non-operating current even when the charging current was 60mA. Also, in comparison to the interrupting characteristics, it was confirmed that the charging current satisfying the rated non-operating current of the $I_{gc}$-free ELB was three times higher than that of the conventional ELB.

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

Empathy Evaluation Method Using Micro-movement (인체 미동을 이용한 공감도 평가 방법)

  • Hwang, Sung Teac;Park, SangIn;Won, Myoung Ju;Whang, Mincheol
    • Science of Emotion and Sensibility
    • /
    • v.20 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • The goal of this study is to present quantification method for empathy. The micro-movement technology (non-contact sensing method) was used to identify empathy level. Participants were first divided into two groups: Empathized and not empathized. Then, the upper body data of participants were collected utilizing web-cam when participants carried expression tasks. The data were analyzed and categorized into 0.5 Hz, 1 Hz, 3 Hz, 5 Hz, 15 Hz. The average movement, variation, and synchronization of the movement were then compared. The results showed a low average movement and variation in a group who empathized. Also, the participants, who empathized, synchronized their movement during the task. This indicates that the people concentrates with each other when empathy has been established and show different levels of movement. These findings suggest the possibility of empathy quantification using non-contact sensing method.

Nondestructive Measurement of Cheese Texture using Noncontact Air-instability Compensation Ultrasonic Sensors

  • Baek, In Suck;Lee, Hoonsoo;Kim, Dae-Yong;Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.319-326
    • /
    • 2012
  • Purpose: Cheese texture is an important sensory attribute mainly considered for consumers' acceptance. The feasibility of nondestructive measurements of cheese texture was explored using non-contact ultrasonic sensors. Methods: A novel non-contact air instability compensation ultrasonic technique was used for five varieties of hard cheeses to measure ultrasonic parameters, such as velocity and attenuation coefficient. Five texture properties, such as fracturability, hardness, springiness, cohesiveness, and chewiness were assessed by a texture profile analysis (TPA) and correlated with the ultrasonic parameters. Results: Texture properties of five varieties of hard cheese were estimated using ultrasonic parameters with regression analysis models. The most effective model predicted the fracturability, hardness, springiness, and chewiness, with the determination coefficients of 0.946 (RMSE = 21.82 N), 0.944 (RMSE = 63.46 N), 0.797 (RMSE = 0.06 ratio), and 0.833 (RMSE = 17.49 N), respectively. Conclusions: This study demonstrated that the non-contact air instability compensation ultrasonic sensing technique can be an effective tool for rapid and non-destructive determination of cheese texture.

A Non-contact Two-Dimensional Position Sensing Device Using Electromagnetic Induction (전자기 유도 방식을 이용한 비접촉식 2차원 위치 센서)

  • Ryu, Young-Kee;Koh, Kuk-Won;Kim, Hak-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1159-1163
    • /
    • 2012
  • In this paper, we would like to introduce two dimensional non-contact position sensor by using an electromagnetic induction based coil system and an algorithm to estimate the position of pointer. The sensor which will introduce in this paper is composed of a pointer including LC resonant circuit and a sensor board to detect the electromagnetic signal from the pointer. Because of the simplicity shape of the line antenna, low cost and free form curved shape of the sensor device is possible. In this research, we proposed a new two dimensional non-contact type electromagnetic sensor system and realized the proposed sensor device. From the experiments, the proposed device can be employed for the two dimensional position sensor.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications (비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발)

  • Park, Tae-Ung;Kim, Ik-Soo;Kim, Min-Ji;Park, Chulhwan;Seo, Eui-kyoung;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors (저비용 음압센서를 이용한 콘크리트 구조물에서의 비접촉 Impact-Echo 기반 손상 탐지)

  • Kim, Jeong-Su;Lee, Chang Joon;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The feasibility of using low cost, unpowered, unshielded dynamic microphones is investigated for cost effective contactless sensing of impact-echo signals in concrete structures. Impact-echo tests on a delaminated concrete slab specimen were conducted and the results were used to assess the damage detection capability of the low cost system. Results showed that the dynamic microphone successfully captured impact-echo signals with a contactless manner and the delaminations in concrete structures were clearly detected as good as expensive high-end air pressure sensor based non-contact impact-echo testing.

A Study on Intelligent Robot Bin-Picking System with CCD Camera and Laser Sensor (CCD카메라와 레이저 센서를 조합한 지능형 로봇 빈-피킹에 관한 연구)

  • Kim, Jin-Dae;Lee, Jeh-Won;Shin, Chan-Bai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.58-67
    • /
    • 2006
  • Due to the variety of signal processing and complicated mathematical analysis, it is not easy to accomplish 3D bin-picking with non-contact sensor. To solve this difficulties the reliable signal processing algorithm and a good sensing device has been recommended. In this research, 3D laser scanner and CCD camera is applied as a sensing device respectively. With these sensor we develop a two-step bin-picking method and reliable algorithm for the recognition of 3D bin object. In the proposed bin-picking, the problem is reduced to 2D intial recognition with CCD camera at first, and then 3D pose detection with a laser scanner. To get a good movement in the robot base frame, the hand eye calibration between robot's end effector and sensing device should be also carried out. In this paper, we examine auto-calibration technique in the sensor calibration step. A new thinning algorithm and constrained hough transform is also studied for the robustness in the real environment usage. From the experimental results, we could see the robust bin-picking operation under the non-aligned 3D hole object.

An Analysis on the Effect of the Shape Features of the Textile Electrode on the Non-contact Type of Sensing of Cardiac Activity Based on the Magnetic-induced Conductivity Priciple (직물 전극의 형상 특성이 자계 유도성 전도율 기반의 비접촉식 심장활동 센싱에 미치는 효과의 분석)

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seon Ah;Park, Hee Jung;Kim, Kyeong Seop;Lee, Joo Hyeon;Lee, Jeong Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.803-810
    • /
    • 2013
  • The purpose of this research is to analyze the effect of shape of the inductive textile electrode on the non-contact heart activity sensing, based on the magnetic-induced conductivity principle. Four types of the inductive textile electrodes were determined according to the combinations of the two shape features. A fiber-metal hybrid-typed conductive thread was developed and applied to materialization of the textile electrodes by embroidery method. The heart activity was extracted through the textile electrode sewn on a T-shirt. The experiments were implemented to constantly measure the heart activity for 20 seconds, in each case of 5 healthy male subjects. The heart activity signals acquired in each type of the inductive textile electrode were analyzed, 1)by drawing a comparison of morphology with those of ECG signal (LeadII), and 2)by calculation of the normalized mean and standard deviation of magnitude of the heart activity signals. The analysis resulted that the relatively better quality of signals were acquired in the 'square' types in the matter of whole shape, while the better results were obtained in 'donut' types in the matter of center hole. Accordingly, the relatively best quality of signals was obtained in the case of 'Square-Donut' type of the inductive textile electrode.