• Title/Summary/Keyword: Non-cellulosic materials

Search Result 9, Processing Time 0.025 seconds

Breakdown Strength Estimation of Non-Cellulosic Insulating Materials Used in Electrical Power Equipment

  • Singh, Sakshi;Mohsin, Mirza Mohd.;Masood, Aejaz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.338-340
    • /
    • 2017
  • Breakdown of solid insulating materials in power equipment could result in undesired outages and replacements, and may be due to an increase in electric stress on the material. Therefore, it is necessary to conduct a proper diagnosis of materials before their practical use. In this work, a few inherent properties of different non-cellulosic insulating materials, such as Nomex, Teflon, laminated Nomex, glass bonded mica, epoxy resin bonded mica paper, and epoxy resin bonded fiberglass, have been evaluated by performing non-destructive dielectric diagnostic measurements, and an attempt has been made to correlate these basic parameters to evaluate the breakdown strength (BDS). An equation has been proposed using a basic theory which defines the correlation between the BDS, dielectric constant, dissipation factor, sample thickness, and volume resistivity. The results obtained from the equation are also compared with the experimental values. The suggested equation will be helpful to predict the BDS of any non-cellulosic material without experimentation in the laboratory.

Comparison of cellulose DP measurements using the CED (Cupriethylene diamine) and NMMO(N-methylmorpholine-N-oxide) (CED(Cupriethylene diamine)과 NMMO (N-methylmorpholine-N-oxide)를 이용한 셀룰로오스의 중합도 측정법의 비교)

  • Lee, Min-Woo;Park, Ji-Soon;Park, Dong-Hui;Seo, Yung-Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.62-66
    • /
    • 2010
  • Cellulosic materials were dissolved by NMMO(N-methylmorpholine-N-oxide) and CED (Cupriethylene diamine), respectively, to measure their DPs (degrees of polymerization) by using viscometer. We changed cellulose DPs by applying various amounts of low intensity electron-beam radiation to the cellulosic materials. NMMO is environmental-friendly, non-toxic, and biodegradable organic cellulose solvent and used industrially because of its high cellulose dissolving power and high solvent recovery ratio. The cellulose DP measurement results using these two different chemicals were correlated highly ($R^2$ >0.95). It was also found that cellulose with high DP was dissolved more easily in NMMO than CED. In addition, NMMO method gave more higher resolution in the measurement.

Changes on the Cell Wall Components of Jujube Fruits during Drying (대추 천일건조 중 세포벽 구성성분의 변화)

  • 손미애;김미현;신승렬;송준희;김광수
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.350-354
    • /
    • 1998
  • This paper was investigated to changes of cell components during drying for studies on the softening of jujube fruits. The contents of alcohol-insoluble material, cell wall and water-soluble material were not changed at 6 days of drying, but alcohol-insoluble materials and cell wall were decreased at 9 days of drying, however water-soluble materials were increased. Pectin and hemicellulose were not changed at 6 days of drying. Pectin and alkali-soluble hemicellulose were remarkable decreased at 9 days of drying, but acid-soluble hemicellulose was increased. Water-soluble pectin was not changed at 6 days of drying, but increased at 9 days of drying. EDTA-soluble and insoluble pectin were decreased after 6 days of drying. The non-cellulosic neutral sugars were not changed at 6 days of drying. The contents of arabinose, galactose and total neutral suger were decreased at 9 days of drying.

  • PDF

A Study on the Fire Resistance of Korean Cellulose Insulation (국내 섬유질 단열재의 내화성능에 관한 연구)

  • Kwon, Young-Cheol;Hwang, Jung-Ha;Yu, Hyung-Kyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.10-16
    • /
    • 2008
  • The fire resistance of thermal insulation and interior finishing materials is recently much emphasized after the fire accident at the Icheon Cold Store in January 2008. Three kinds of thermal insulation are used in buildings. They are Organic, Non-organic and cellulosic insulation. Organic insulation such as polystyrene foam board and urethane foam has high thermal resistance but it has no fire resistance. While non-organic insulation such as rockwool and glassfiber has high fire resistance, it has lower thermal resistance than organic insulation. Cellulose insulation is primarily manufactured from recycled newsprint or cardboard using shredders and fiberizers. Despite of its environmental friendliness and high thermal resistivity, its domestic use has not much increased because of the prejudice that paper can easily burn. However, the cellulose insulation as a product is about 80 wt.% cellulosic fiber and 20 wt.% chemicals, most of which are fire retardants such as boric acid and ammonium sulfate. It is required to secure its fire safety for more consumption as a building insulation in Korea. Therefore, this study investigates the fire resistance of Korean cellulose insulation according to the rate of fire retardant and finally presents the optimum rate of fire retardant in cellulose as building insulation. The fire safety test was conducted according to the ASTM C 1485-00. The test results indicate that above 18 wt% of fire retardant is necessary to secure the fire safety of cellulose insulation.

The Change of Physical Characteristics of Kenaf Fiber by the Chemical Processes (화학처리에 의한 케나프 섬유인 물리적 특성인 변화)

  • Yoo Hye-Ja;Lee Hye-Ja;Kim Jung-Hee;Ahn Chun-Soon;Song Kyung-Hun;Han Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.7 s.155
    • /
    • pp.1025-1033
    • /
    • 2006
  • Kenaf bast can be obtained by decortication of Kenaf stem. Kenaf fibers are much more rough than cotton fiber because they include impurities as pectin, lignin and hemicellulose besides cellulose. The purpose of this research is to investigate the distribution of kenaf fiber length and diameter during the processes of removing impurities. To remove pectin, kenaf bast was retted chemically. A half of the retted kenaf fiber bundle were scoured and bleached. The other half one were treated with $NaClO_2$ solution to remove lignin, and were treated with sodium hydroxide solution to remove hemicellulose. Four kinds of specimens that were obtained for investigating physical characteristics. Length and diameter of 100 fibers on each specimen was measured. The tensile strength of 100 fiber bundles were measured. And also the color values of them were measured with spectrocolorimeter. The length of retted kenaf fiber was 16.97cm. Then it decreased to 11.43cm after bleaching. Kenaf fiber bundles could be finer by chemical processes that remove non-cellulosic materials. The thickness of retted fiber was $132{\mu}m$. And after undergoing the chemical processes to remove non-cellulosic materials, the thickness of kenaf fiber became finer as $73{\mu}m$. Tensile strength of the retted kenaf fiber bundles was 11.37Mpa. The retted kenaf fiber lost their strength as 22.6% by bleaching and as 18.3% by treatment for removing lignin. The retted kenaf fiber showed low whiteness as 56.48 of L*value. After bleaching, the kenaf fibers have creamy white color and their whiteness got 90.02 of L*value. After the treatment for removing hemicellulose, the kenaf fibers also have creamy white color and their whiteness got L* value of 79.02.

Changes in the Cell Wall Components and Glycosidases Activity during Development of Peach Fruits (복숭아 과실의 발육 중 세포벽성분 및 Glycosidase 활성의 변화)

  • 장경호;김대현;변재균
    • Food Science and Preservation
    • /
    • v.8 no.1
    • /
    • pp.66-73
    • /
    • 2001
  • This study was carried out to know whether $\beta$-galactosidase is directly important or not on fruit softening during the development of peach fruits compared to those in the stage stage. It was investigated that the flesh firmness, cell wall components, and the glycosidase activities of the peach fruits with a fast softening cultivar, 'Mibeakdo', a slow softening cultivar,'Yumyung'and a middle softening cultivar, 'Okubo$\beta$, at different developmental stages, on 13 May, 16 June, 16 July, and 5 August and on 28 August which harvested only 'Yumyung' fruits. In order to investigate the amounts of total sugar and non-cellulosic neutral sugar, the cell wall materials of each fruit were solubilized in distilled water, 0.05M CDTA, 0.05M Na$_2$CO$_3$, 4% KOH, and 24% KOH sequentially. During the fruit development, the fruit firmness of three cultivars decreased and the fruit firmness of 'Yumyung' was higher than that fo 'Mibeakdo' and 'Okubo' in the overall period. During the fruit development, the changes of total sugar amounts of each measured fractions were similar among peach cultivars. Arabinose and galactose were the predominant non-cellulosic neutral sugars in all the fractions including cell wall material of the three cultivars. There was an active relationship between the changes of flesh firmness in three cultivars and the mol % changes of rhamnose on 5 August which was the harvest date of 'Mibeakdo' and 'Okubo' fruits. The activity of soluble $\beta$-galactosidase was high at the early developmental stage and then dropped to a very low activity level in all cultivars. The activity of cell wall-bound $\beta$-galactosidase was high at the early developmental stage and then decreased continuously through the harvest date. In addition the changes of other glycosidase activities were similar among cultivars.

  • PDF

Changes in Cell Wall Components, and Solubilization and Depolymerization of Pectin and Neutral Sugar Polymers during Softening of 'Tsugaru' Apples ('쓰가루'사과의 연화에 따른 세포벽성분의 변화와 펙틴 및 중성다당류의 가용화와 분해)

  • Choi, Cheol;Kang, In-Kyu
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.834-839
    • /
    • 2006
  • This study was carried out to investigate changes in cell wall components and solubilization and depolymerization of pectin and neutral sugar polymers during softening of 'Tsugaru' apples. Pectic polysaccharides were solubilized in different solvents, distilled-water, 0.05 M CDTA, 0.05 M $Na_2CO_3$, and 8 M KOH, from cell wall materials during fruit softening. The uronic acid contents in distilled-water fraction rapidly increased along with fruit softening at 4 weeks after ambient storage. In the change of non-cellulosic neutral sugars in the cell wall of ‘Tsugaru’ fruits, the major sugar was galactose and arabinose in distilled-water, 0.05 M CDTA and 0.05 M $Na_2CO_3$ soluble fractions, and it was glucose, galactose and xylose in 8 M KOH fraction. Especially the change of galactose contents in distilled-water fraction was increased greatly along with fruit softening. When uronic acid polymers (UAP) and carbohydrate polymers (CP) in distilled-water fraction were filtered and separated using Sepharose CL-2B column, the high molecular UAP and CP were degraded to the low molecular ones from at harvest to softening fruit. Thus, the amount of high molecular polymers were greatly decreased along with fruit softening.

Pulping Properties of Bast Fibers of Paper Mulberry by Pre-steaming and 2-stage Cooking System (증기 전처리 및 2단 증해 시스템에 의한 닥 인피부의 펄프화 특성)

  • Hwang, Ji Hyun;Seo, Jin Ho;Kim, Hyoung Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.75-82
    • /
    • 2013
  • The traditional Hanji-making was confronted with lots of industrial disadvantages and economic problems, due to the original hand-made process. Recently, the studies on the automation of overall Hanji manufacturing process is carried out by applying the commercial chemical pulping method in order to expand industrial application or efficiency of non-wood fibrous materials. However, the application of commercial pulping methods to the bast tissues of paper mulberry leads to the chemical and mechanical deterioration of cellulosic fibers. In this study, the optimal cooking method using the bast parts of paper mulberry produced by an auto-scraping device was applied to minimize the damage of fiber strength for the paper yarn manufacture. The pre-steaming treatment and alkaline pulping systems were evaluated in removal efficiency of lignin and pectin materials within the bast tissue of paper mulberry. With the application of pre-steaming treatment and 2 stage pulping system using potassium carbonate and then sodium hydroxide, kappa values were decreased two times more in lignin removal than the single stage of pulping method. It was also identified from SEM images and ATR-FTIR spectra that the pectin components within cellular structure of bast tissue were easily removed and the debarked bast parts by a auto-scraping device were easily defiberized by 2-stage pulping sequence using potassium carbonate/sodium hydroxide pulping system.

Phenolic Compounds and Antioxidant Activity in Cell Wall Materials from Deodeok (Codonopsis lanceolata) (더덕 부위별 세포벽 물질의 페놀성화합물과 항산화 활성)

  • Kan, Yoon-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.345-349
    • /
    • 2009
  • This study measured the amounts of uronic acid, total sugars, non-cellulosic neutral sugars, phenolic compounds as well as antioxidants activity in cell wall materials (CWM) derived from different parts of deodeok (Codonopsis lanceolata). The values of the uronic acid (UA): neutral sugars (NS) ratio in polymers extracted from the CWM of the flesh and skin were 4 and 6, respectively. The total sugar contents of the flesh and skin were 788.6 and 824.9 ${mu}g/mg$ of CWM, respectively. Galactose and arabinose were the main noncellulosic neutral sugars. The chemical structure of five phenolic compounds from the CWM were analyzed and identified as vanillic acid, p-OH-benzaldehyde, vanillin, ferulic acid, and 8-O-4' diferulic acid by HPLC spectral data. Among them, p-OH-benzaldehyde, vanillin, and 8-O-4' diferulic acid were the first compounds identified from the deodeok. The content of 8-O-4' diferulic acid in the skin CWM was 56.1 ${mu}g/g$ AIR (alcohol insoluble residue). The ethanol-NaOH fractions from CWM had the highest oxygen radical absorbance capacity (ORAC) activities, followed by the AIR fractions and ethanol fractions.