• Title/Summary/Keyword: Non-building Structures

Search Result 379, Processing Time 0.028 seconds

Shear Deformation of Steel Fiber-Reinforced Prestressed Concrete Beams

  • Hwang, Jin-Ha;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kang, Thomas H.K.;Pan, Zuanfeng
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.53-63
    • /
    • 2016
  • Steel fiber-reinforced prestressed concrete (SFRPSC) members typically have high shear strength and deformation capability, compared to conventional prestressed concrete (PSC) members, due to the resistance provided by steel fibers at the crack surface after the onset of diagonal cracking. In this study, shear tests were conducted on the SFRPSC members with the test variables of concrete compressive strength, fiber volume fraction, and prestressing force level. Their localized behavior around the critical shear cracks was measured by a non-contact image-based displacement measurement system, and thus their shear deformation was thoroughly investigated. The tested SFRPSC members showed higher shear strengths as the concrete compressive strength or the level of prestress increased, and their stiffnesses did not change significantly, even after diagonal cracking due to the resistance of steel fibers. As the level of prestress increased, the shear deformation was contributed by the crack opening displacement more than the slip displacement. In addition, the local displacements around the shear crack progressed toward directions that differ from those expected by the principal strain angles that can be typically obtained from the average strains of the concrete element. Thus, this localized deformation characteristics around the shear cracks should be considered when measuring the local deformation of concrete elements near discrete cracks or when calculating the local stresses.

Modal Properties of a Tall Reinforced Concrete Building Based on the Field Measurement and Analytical Models (실측 및 해석모델에 의한 철근콘크리트조 주상복합건물의 모드특성)

  • Kim, Ji-Young;Kim, Ju-Yeon;Kim, Mi-Jin;Yu, Eun-Jong;Kim, Dae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.289-296
    • /
    • 2009
  • Natural frequency is a key parameter to determine the seismic and wind loading of tall flexible structures, and to assess the wind-induced vibration for serviceability check. In this study, natural frequencies and associated mode shapes were obtained from measured acceleration data and system identification technique. Subsequently, finite element(FE) models for a tall reinforced concrete buildings were built using a popular PC-based finite element analysis program and calibrated to match their natural frequencies and mode shapes to actual values. The calibration of the FE model included: 1) compensation of modulus of elasticity considering the mix design strength, 2) flexural stiffness of floor slabs, and 3) major non-structural components such as plain concrete walls. Natural frequencies and mode shapes from the final FE model showed best agreement with the measured values.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Development of a Prototype for an Earthwork BIM Environment (건설현장 굴착작업을 위한 토공 BIM 프로토타입 개발)

  • Moon, Sungwoo;Son, Jihong;Hong, Soonheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.3
    • /
    • pp.707-714
    • /
    • 2015
  • The national government is pushing hard the adoption of the BIM (Building Information Modeling) technology in the construction industry. The BIM application provides a visualized environment where the construction manager can inspect the structure of buidling structures. The application also provides information on activity progresses as well as earned values. However, BIM is mostly applied to visualize a structural object with definite forms. The BIM technology needs to be extended to include an object with non-definite forms such as earthwork operations. The objective of this study is to present a prototype of earthwork BIM in the construction operation. The prototype has been built on the attributes of geological information, construction equipment and positioning. The prototype of earthwork BIM shows a 3D graphic simulation of construction equipment moving around for digging and loading.

Techniques of flood damage investigation and flood losses data management (홍수재해조사 및 재해자료관리 기법)

  • 김양수
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.36-51
    • /
    • 2000
  • Almost every year, Korean suffered from the repetitive natural disasters such as typhoons and floods. During last 10 years, Korea experienced annual average of $50 million property damages caused by inundation. To estabilish the flood disaster counter plan, knowledge for flood damage causes based on the field investigations of inundated area is required. The field investigations is focused on technique to document and analyze the meteorological conditions leading to torrential rains, the causes and patterns of flooding, the performance of flood control structures in affected areas, the extent damages and the effectiveness of local emergency response and recovery actions. We did comparative analysis of field investigation techniques. As a major goal of flood hazard map design, one of non structural disaster countermeasures, it was expected to reduce flood damage losses by requiring local governments to implement land-use regulation that would result in safe building practices in flood hazard areas. This requires local governments to develop flood hazard maps to assess how to manage particularly vulnerable floodplain areas. In this study we suggested a design manual and the management system of flood hazard map.

  • PDF

Influencing Factor Analysis on Groundwater Level Fluctuation Near River (지반 및 수문특성을 고려한 하천인근 지역의 지하수위 변동 영향인자 분석)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.72-81
    • /
    • 2018
  • Groundwater level (GWL) fluctuation, which can occur due to several artificial and natural reasons, causes reduction of bearing capacity of foundation structures and can lead settlement of ground. As a result, GWL fluctuation affects stability and serviceability of entire building. However, in many case, GWL is considered as fixed value that obtain from geotechnical investigations. That is reason that GWL fluctuation is considered as area of non-geotechnical engineering. In present study, factors causing GWL fluctuation were analyzed at urban and rural area as preliminary research of quantification of GWL fluctuation. GWL varies according to hydrological and geographical characteristics. Also, the influence factors are largely affected by hydrological and geographical characteristics.

Structural System Selection and Highlights of Changsha IFC T1 Tower

  • Jianlong, Zhou;Daoyuan, Lu;Liang, Huang;Jun, Ji;Jun, Zhu;Jingyu, Wang
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • This paper presents the determination of the structural system of the Changsha IFC T1 tower with 452 m in architectural height and 440.45 m in structural height. Sensitivity analyses are carried out by varying the location of belt trusses and outriggers. The enhancement of seismic capacity of the outer frame by reasonably adjusting the column size is confirmed based on parametric studies. The results from construction simulation including the non-load effect of structures demonstrate that the deformation of vertical members has little effect on the load-bearing capacity of belt trusses and outriggers. The elastoplastic time-history analysis shows that the overall structure under rare earthquake load remains in an elastic state. The influence of the frame shear ratio and frame overturning moment ratio on the proposed model and equivalent mega column model is investigated. It is found that the frame overturning moment ratio is more applicable for judging the resistance of the outer frame against lateral loads. Comparison is made on the variation of these two effects between a classical frame-core tube-outrigger structure and a structure with diagonal braces between super columns under rare earthquakes. The results indicate that plasticity development of the top core cube of the braced structure may be significantly improved.

Analytical Study for Optimal Reinforcement Amount and Development of FRP Seismic Reinforcement that can be Emergency Construction (긴급시공이 가능한 FRP 내진보강재 개발 및 최적 보강량 산정을 위한 해석적 연구)

  • Kim, Jin-Sup;Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Dong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.136-145
    • /
    • 2013
  • Social interest in the seismic retrofit of the structure is growing massive earthquake that occurred recently. The brittle fracture of Non-seismically designed Columns lead to full collapse of the building. In the past, cross-sectional expansion method, a steel plate reinforcing method is applied mainly in recent years, fiber-reinforced method utilizing the advantages of the composite material are preferred. However, the reinforcement methods such as this, there is a drawback to induce physical damage to structures, and time consuming work space is large. IIn this study, FRP seismic reinforcement was developed using the Aluminum connector and the composite material (Glass Fiber Reinforced Polymer). Then, the optimum quantities of FRP seismic reinforcement was determined using a nonlinear finite element analysis program. Finally, the quantity decision process through the design and analysis of FRP reinforcement was suggested.

Constructing an Energy-extended KLEM DB and Estimating the Nested CES Production Functions for Korea (한국 경제의 KLEM DB구축과 중첩 CES 생산함수 추정)

  • Kwon, Oh-Sang;Han, Mijin;Ban, Kyunghoon;Yoon, Jiwon
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.29-66
    • /
    • 2018
  • This study constructs an energy-extended KLEM DB of 35 Korean industries, and estimates the elasticities of substitution under various nesting structures of production technologies. Unlike most existing studies that employed only three inputs, K, L, and E, we applied a dual approach where non-energy intermediate input M is also incorporated as a production input. Our dual approach which extended that of van der Werf (2008)'s 3-input model successfully identified and estimated the multi-nested production functions. We provide the estimates of the elasticities of substitution among 4 different energy sources as well. Our estimation results would be used for energy-environment model building for Korea.

Study on the Performance Characteristics of Organic-Inorganic Hybrid Flame Retardants (유-무기 하이브리드 방염제의 성능특성에 관한 연구)

  • Cho, Kyeong-Rae;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.12-19
    • /
    • 2017
  • The present paper is a study on the performance characteristics of organic-inorganic hybrid flame retardants. MDF plywood has been used, that are being used for the interior decoration of building structures, to make the samples for experiment according to the existing or non-existing treatment of organic-inorganic hybrid flame resistants. Later, the experiment on the measurement of flame retardant performance using a $45^{\circ}$ flammability tester and the experiment on the measurement of combustion characteristic using a cone calorimeter have been proceeded to confirm the performance characteristic of organic-inorganic hybrid flame retardants. From the result of experiments, it has been confirmed that both organic-inorganic hybrid flame retardants have merits of inorganic and organic substances, and that heat resistance, durability and adhesiveness have been largely improved. The performance on the flame retardant has also appeared with excellent effect such as the reduced generation of combustion gas and the decreased generation of smoke.