• Title/Summary/Keyword: Non-Orthogonal Coordinate

Search Result 56, Processing Time 0.03 seconds

Research on a Multi-level Space Vector Modulation Strategy in Non-orthogonal Three-dimensional Coordinate Systems

  • Zhang, Chuan-Jin;Wei, Rui-Peng;Tang, Yi;Wang, Ke
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1160-1172
    • /
    • 2017
  • A novel space vector modulation strategy in the non-orthogonal three-dimensional coordinate system for multi-level three-phase four-wire inverters is proposed in this paper. This new non-orthogonal three-dimensional space vector modulation converts original trigonometric functions in the orthogonal three-dimensional space coordinate into simple algebraic operations, which greatly reduces the algorithm complexity of three-dimensional space vector modulation and preserves the independent control of the zero-sequence component. Experimental results have verified the correctness and effectiveness of the proposed three-dimensional space vector modulation in the new non-orthogonal three-dimensional coordinate system.

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

A numerical study of turbulent flows with adverse pressure gradient (역압력 구배가 있는 난류유동에 대한 수치적 연구)

  • 김형수;정태선;최영기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.668-676
    • /
    • 1991
  • Turbulent flows around tube banks and in the diffuser were studied using a non-orthogonal boundary fitted coordinate system and the modified K-.epsilon. turbulence model. In these cases, many problems emerge which stem from the geometrical complexity of the flow domain and the physical complexity of turbulent flow itself. To treat the complex geometry, governing equations were reformulated in a non-orthogonal coordinate system with Cartesian velocity components and discretised by the finite volume method with a non-staggered variable arrangement. The modified K-.epsilon. model of Hanjalic and Launer was applied to solve above two cases under the condition of strong and mild pressure gradient. The results using the modified K-.epsilon. model results in both test cases.

Prediction of Radiative Heat Transfer in a Three-Dimensional Gas Turbine Combustor with the Finite-Volume Method (유한체적법에 의한 복잡한 형상을 갖는 3차원 가스터빈 연속기내의 복사열 전달 해석)

  • Kim, Man-Yeong;Baek, Seung-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2681-2692
    • /
    • 1996
  • The finite-volume method for radiation in a three-dimensional non-orthogonal gas turbine combustion chamber with absorbing, emitting and anisotropically scattering medium is presented. The governing radiative transfer equation and its discretization equation using the step scheme are examined, while geometric relations which transform the Cartesian coordinate to a general body-fitted coordinate are provided to close the finite-volume formulation. The scattering phase function is modeled by a Legendre polynomial series. After a benchmark solution for three-dimensional rectangular combustor is obtained to validate the present formulation, a problem in three-dimensional non-orthogonal gas turbine combustor is investigated by changing such parameters as scattering albedo, scattering phase function and optical thickness. Heat flux in case of isotropic scattering is the same as that of non-scattering with specified heat generation in the medium. Forward scattering is found to produce higher radiative heat flux at hot and cold wall than backward scattering and optical thickness is also shown to play an important role in the problem. Results show that finite-volume method for radiation works well in orthogonal and non-orthogonal systems.

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

Nonsteady Plane-strain ideal forming with elastic dead zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Richmond Owen
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.190-193
    • /
    • 2004
  • Ever since the ideal forming theory has been developed fur process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

  • PDF

Numerical Analysis of Evolution of Thermal Stratification in a Curved Piping System

  • Park, Seok-Ki;Nam, Ho-Yun;Jo, Jong-Chull
    • Nuclear Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.169-179
    • /
    • 2000
  • A detailed numerical analysis of the evolution of thermal stratification in a curved piping system in a nuclear power plant is performed. A finite volume based thermal-hydraulic computer code has been developed employing a body-fitted, non-orthogonal curvilinear coordinate for this purpose. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of momentum interpolation method. The SIMPLE algorithm is employed for the pressure and velocity coupling, and the convection terms are approximated by a higher-order bounded scheme. The thermal-hydraulic computer code developed in the present study has been applied to the analysis of thermal stratification in a curved duct and some of the predicted results are compared with the available experimental data. It is shown that the predicted results agree fairly well with the experimental measurements and the transient formation of thermal stratification in a curved duct is also well predicted.

  • PDF

Numerical Analysis of Turbulent Flow and Heat Transfer Normal to a Staggered Tube Bank (교차된 관군에 수직한 난류유동 및 난류열전달의 수치해석)

  • 이건휘;이병곤;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.218-228
    • /
    • 1991
  • Since heat exchangers are composed of bank of tubes, the knowledge on the flow and heat transfer characteristics of the tube bank are required for the optimum design and selection of heat exchangers. In this paper, the turbulent flow fields and heat transfers normal to a staggered tube bank are solved numerically employing K-.epsilon. 2 equation turbulence model and non-orthogonal coordinate transformation for the treatment of curved surface of tubes. Predicted mean Nusselt numbers of tube bank agree reasonably well with Grimision's correlation

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion (유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석)

  • Jo, Jong-Chull;Kim, Yun-Il;Choi, Seok-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF