• Title/Summary/Keyword: Non-Linearity

Search Result 893, Processing Time 0.023 seconds

Comparative Study on the Applicability of Point Estimate Methods in Combination with Numerical Analysis for the Probabilistic Reliability Assessment of Underground Structures (수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성에 관한 비교 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.86-92
    • /
    • 2012
  • Point estimate method has a less accuracy than Monte Carlo simulation that is usually considered as an exact probabilistic method, but this method still remains popular in probability-based reliability assessment in geotechnical and rock engineering, because it significantly reduce the number of sampling points and produces the statistical moments of a performance function in a reasonable accuracy. In the present study, we investigated the accuracy and applicability of point estimate methods proposed by Rosenblueth and Zhou & Nowak by comparing the results of these two methods with those of Monte Carlo simulations. The comparison was carried out for the problem of a lined circular tunnel in an elastic medium where an closed-form analytical solution is given. The comparison results showed that despite the non-linearity of the analytical solution, the statistical moments calculated by the point estimate methods and the Monte Carlo simulations agreed well with an average error of roughly 1-2%. This average error demonstrates the applicability of the two point estimate methods for the probabilistic reliability assessment of underground structures in combination with numerical analysis.

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

Study on the Design Computing Model for SpO Extraction Algorithm on Pulse Oximetry (펄스 옥시메터의 산소포화도 추출 알고리즘을 위한 계산모델 설계에 관한 연구)

  • Kim, Yun-Yeong;Kim, Do-Cheol;Lee, Yun-Seon
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • This paper is based on the design and analysis computing model of oxygen saturation with the pulse oximeter using the integral ratio of pulsating components. In our proposed algorithm. we modeled the transmitted optical signal in fingertip or earlobe to DC component $A_{dc}$ pulsating component $A_a\;Sinwt$, noise component $A_{noise}$ and etc.. To separate the pulsating components and DC components efficiently, we defined the signal average to DC components. Also we presented the way to eliminate the noise using integral ratio. To acquire a linearity of correlation graph for pulsating components ratios and non invasive oxygen saturation. we intensively observed on the oxygen saturations in the range of 75-100% in consideration of the error range of simulator. Also, for real time processing we experimented on changing the period of area calculating cycle from 1 to 6. The functional evaluation of the algorithm is compared with the method using the amplitude ratio of pulsating components frequently seen with pulse oximeter. The result was that our algorithm with 4 cycles of area calculating cycle which considered to be best fit by 1% to the existing method. Moreover r , the decision coefficient showing the correlation of regression graph with real data, proved better result of 0.985 than 0.970.

  • PDF

The Nonparametric Estimation of Interest Rate Model and the Pricing of the Market Price of Interest Rate Risk (비모수적 이자율모형 추정과 시장위험가격 결정에 관한 연구)

  • Lee, Phil-Sang;Ahn, Seong-Hark
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.73-94
    • /
    • 2003
  • In general, the interest rate is forecasted by the parametric method which assumes the interest rate follows a certain distribution. However the method has a shortcoming that forecasting ability would decline when the interest rate does not follow the assumed distribution for the stochastic behavior of interest rate. Therefore, the nonparametric method which assumes no particular distribution is regarded as a superior one. This paper compares the interest rate forecasting ability between the two method for the Monetary Stabilization Bond (MSB) market in Korea. The daily and weekly data of the MSB are used during the period of August 9th 1999 to February 7th 2003. In the parametric method, the drift term of the interest rate process shows the linearity while the diffusion term presents non-linear decline. Meanwhile in the nonparametric method, both drift and diffusion terms show the radical change with nonlinearity. The parametric and nonparametric methods present a significant difference in the market price of interest rate risk. This means in forecasting the interest rate and the market price of interest rate risk, the nonparametric method is more appropriate than the parametric method.

  • PDF

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Application of two-term storage function method converted from kinematic wave method (운동파법의 변환에 의한 2항 저류함수법의 적용)

  • Kim, Chang Wan;Chegal, Sun Dong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1057-1066
    • /
    • 2019
  • The storage function method is used as a flood prediction model for four flood control offices in Korea as a method to analyze the actual rainfall-runoff relationship with non-linearity. It is essential to accurately estimate the parameters of the storage function method for accurate runoff analysis. However, the parameters of the storage function method currently in use are estimated by the empirical formula developed by the limited hydrological analysis in 2012; therefore, they are somewhat inaccurate. The kinematic wave method is a method based on physical variables of watershed and channel and is widely used for rainfall-runoff analysis. By adopting the two-term storage function method by the conversion of the kinematic wave method, parameters can be estimated based on physical variables, which can increase the accuracy of runoff calculation. In this research, the reproducibility of the kinematic wave method by the two-term storage function method was investigated. It is very easy to estimate the parameters because equivalent roughness, which is an important physical variable in watershed runoff, can be easily obtained by using land use and land cover, and the physical variable of channel runoff can be easily obtained from the basic river planning report or topographic map. In addition, this research examined the applicability of the two-term storage function method to runoff simulation of Naechon Stream, a tributary of the Hongcheon River in the Han River basin. As a result, it is considered that more accurate runoff calculation results could be obtained than the existing one-term storage function method. It is expected that the utilization of the storage function method can be increased because the parameters can be easily estimated using physical variables even in unmeasured watersheds and channels.

ADVANTAGES OF USING ARTIFICIAL NEURAL NETWORKS CALIBRATION TECHNIQUES TO NEAR-INFRARED AGRICULTURAL DATA

  • Buchmann, Nils-Bo;Ian A.Cowe
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1032-1032
    • /
    • 2001
  • Artificial Neural Network (ANN) calibration techniques have been used commercially for agricultural applications since the mid-nineties. Global models, based on transmission data from 850 to 1050 nm, are used routinely to measure protein and moisture in wheat and barley and also moisture in triticale, rye, and oats. These models are currently used commercially in approx. 15 countries throughout the world. Results concerning earlier European ANN models are being published elsewhere. Some of the findings from that study will be discussed here. ANN models have also been developed for coarsely ground samples of compound feed and feed ingredients, again measured in transmission mode from 850 to 1050 nm. The performance of models for pig- and poultry feed will be discussed briefly. These models were developed from a very large data set (more than 20,000 records), and cover a very broad range of finished products. The prediction curves are linear over the entire range for protein, fat moisture, fibre, and starch (measured only on poultry feed), and accuracy is in line with the performance of smaller models based on Partial Least Squares (PLS). A simple bias adjustment is sufficient for calibration transfer across instruments. Recently, we have investigated the possible use of ANN for a different type of NIR spectrometer, based on reflectance data from 1100 to 2500 nm. In one study, based on data for protein, fat, and moisture measured on unground compound feed samples, dedicated ANN models for specific product classes (cattle feed, pig feed, broiler feed, and layers feed) gave moderately better Standard Errors of Prediction (SEP) compared to modified PLS (MPLS). However, if the four product classes were combined into one general calibration model, the performance of the ANN model deteriorated only slightly compared to the class-specific models, while the SEP values for the MPLS predictions doubled. Brix value in molasses is a measure of sugar content. Even with a huge dataset, PLS models were not sufficiently accurate for commercial use. In contrast an ANN model based on the same data improved the accuracy considerably and straightened out non-linearity in the prediction plot. The work of Mr. David Funk (GIPSA, U. S. Department of Agriculture) who has studied the influence of various types of spectral distortions on ANN- and PLS models, thereby providing comparative information on the robustness of these models towards instrument differences, will be discussed. This study was based on data from different classes of North American wheat measured in transmission from 850 to 1050 nm. The distortions studied included the effect of absorbance offset pathlength variation, presence of stray light bandwidth, and wavelength stretch and offset (either individually or combined). It was shown that a global ANN model was much less sensitive to most perturbations than class-specific GIPSA PLS calibrations. It is concluded that ANN models based on large data sets offer substantial advantages over PLS models with respect to accuracy, range of materials that can be handled by a single calibration, stability, transferability, and sensitivity to perturbations.

  • PDF

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

KFDA TLD Dose Quality Audit and Measurement Uncertainty (식품의약품안전청의 치료방사선 선량보증과 측정불확도)

  • Jeong, Hee-Kyo;Lee, Hyun-Ku;Kim, Gwe-Ya;Yang, Hyun-Kyu;Lim, Chun-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • Korea Food and Drug Administration(KFDA) has peformed the calibration of therapy level dosimeters for Co-60 radiation since 1979. The reference standard ionization chamber has been calibrated at BIPM in France. The uncertainty on the KFDA calibration coefficients is 0.9 %(k=2) for air kerma and absorbed dose to water. Since 1999 a national quality audit program for ensuring dosimetry accuracy in Korea radiotherapy centers has been performed by the KFDA. The uncertainty associated with the determination of the absorbed dose to water from the TLD readings for high energy x-ray is 1.6 %(k=1). The correction factors for energy, non-linearity dose response, and TLD holder are used in the dose determination. Agreement between the user stated dose and KFDA measured dose within ${\pm}$ 5 % is considered acceptable. KFDA TLD postal dose quality audit program was peformed for 71 beam qualities of 53 domestic radiotherapy centers in 2003. The results for quality assurance showed that 63 out of 71 beam qualifies (89 %) satisfied the acceptance limit. The second audit was carried out for the centers outside the limit and ail of them have been corrected.

  • PDF

Elasto-Magnetic Sensor-Based Local Cross-Sectional Damage Detection for Steel Cables (Elasto-Magnetic 센서를 이용한 강재 케이블 국부 단면 감소 손상 탐지)

  • Kim, Ju-Won;Nam, Min-Jun;Park, Seung-Hee;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The Elasto-magnetic sensor is applied to detect the local cross-sectional loss of steel cables in this study while it was originally developed for measuring the tensile force in the previous works. To verify the feasibility of the proposed damage detection technique, steel bars which have 4-different diameters were fabricated and the output voltage value was measured at each diameter by the E/M sensor. Optimal input voltage and working point are chosen so that the linearity and resolution of results can ensure through repeated experiments, and then the E/M sensor was measured the output voltage values at the damage points of steel bar specimen that was applied the 4 types of damage condition based on the selected optimal experimental condition. This proposed approach can be an effective tool for steel cable health monitoring.