• 제목/요약/키워드: Non-Linearity

검색결과 901건 처리시간 0.029초

H infinity control design for Eight-Rotor MAV attitude system based on identification by interval type II fuzzy neural network

  • CHEN, Xiangjian;SHU, Kun;LI, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.195-203
    • /
    • 2016
  • In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on interval type II fuzzy neural network identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV attitude system has been verified by three prototy experiments.

A 2 GHz 20 dBm IIP3 Low-Power CMOS LNA with Modified DS Linearization Technique

  • Rastegar, Habib;Lim, Jae-Hwan;Ryu, Jee-Youl
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권4호
    • /
    • pp.443-450
    • /
    • 2016
  • The linearization technique for low noise amplifier (LNA) has been implemented in standard $0.18-{\mu}m$ BiCMOS process. The MOS-BJT derivative superposition (MBDS) technique exploits a parallel LC tank in the emitter of bipolar transistor to reduce the second-order non-linear coefficient ($g_{m2}$) which limits the enhancement of linearity performance. Two feedback capacitances are used in parallel with the base-collector and gate-drain capacitances to adjust the phase of third-order non-linear coefficients of bipolar and MOS transistors to improve the linearity characteristics. The MBDS technique is also employed cascode configuration to further reduce the second-order nonlinear coefficient. The proposed LNA exhibits gain of 9.3 dB and noise figure (NF) of 2.3 dB at 2 GHz. The excellent IIP3 of 20 dBm and low-power power consumption of 5.14 mW at the power supply of 1 V are achieved. The input return loss ($S_{11}$) and output return loss ($S_{22}$) are kept below - 10 dB and -15 dB, respectively. The reverse isolation ($S_{12}$) is better than -50 dB.

물의 순환 학습 상황에서 초등학생의 시스템 사고의 특징 (Characteristics of Elementary Students' System Thinking in Learning of Water Cycle)

  • 김보민;맹승호
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제39권3호
    • /
    • pp.412-432
    • /
    • 2020
  • The purpose of this study is to explore the characteristics and the level of fourth grade elementary students' system thinking when they learn the unit of "Journey of Water" in terms of four key elements of system thinking such as understanding of the structure of a system, non-linearity and cyclic features, inter-relations and feedback between system properties, and temporal and invisible aspects of a system. Data included students' worksheets and their responses to a set of Likert-scaled and written assessment items on water cycle. The results showed that the level of students' system thinking did not have any hierarchy in relation to the key elements of water cycle system. In addition, the aspects of individual student's system thinking on its sub-elements were different from each other. Also, there were core ideas of system thinking which were intensively considered according to a given context to understand a complex systemic subject. When students learn water cycle, understanding of non-linearity and inter-relations were weaker compared with other key elements of system thinking. Therefore, if these two factors are taught in advance, it can promote understanding of whole system of water cycle.

3차원 수치해석을 통한 궤도지지말뚝의 동적거동 평가 (Evaluation of Dynamic Behavior for Pile-Supported Slab Track System by 3D Numerical Analysis)

  • 유민택;백민철;이일화;이진선
    • 한국지진공학회논문집
    • /
    • 제21권5호
    • /
    • pp.255-264
    • /
    • 2017
  • Dynamic numerical simulation of pile-supported slab track system embedded in a soft soil and embankment was performed. 3D model was formulated in a time domain to consider the non-linearity of soil by utilizing FLAC 3D, which is a finite difference method program. Soil non-linearity was simulated by adopting the hysteric damping model and liner elements, which could consider soil-pile interface. The long period seismic loads, Hachinohe type strong motions, were applied for estimating seismic respose of the system, Parametric study was carried out by changing subsoil layer profile, embankment height and seismic loading conditions. The most of horizontal permanent displacement was initiated by slope failure. Increase of the embedded height and thickness of the soft soil layer leads increase of member forces of PHC piles; bending moment, and axial force. Finally, basic guidelines for designing pile-supported slab track system under seismic loading are recommended based on the analysis results.

풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구 (Test and evaluation of a large scale composite rotor blade for wind turbine)

  • 공창덕;정종철;장병섭
    • 한국추진공학회지
    • /
    • 제5권1호
    • /
    • pp.76-81
    • /
    • 2001
  • A structural test of the wind turbine rotor blade is to evaluate the uncertainty of design due to selection of material, design concepts, production processes and so on, and their possible impacts on the structural integrity. In the full-scale static strength test, the measuring parameters are strain and displacements vs. loads, weight and the center of gravity. In order to simulate the aerodynamics load, the three-point loading method is applied. There is slight difference between the measured results and the predicted results for the reference fiber volume fraction of 60% . However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading exists, a linear static solution is sufficient for the design purpose due to te small amount of non-linearity. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

Suspension System의 가속내구해석 (Accelerated Durability Analysis of Suspension System)

  • 민한기;정종안;양인영
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

온도보상 및 선형화 된 전력검출기에 관한 연구 (A Study on the Temperature Compensated and Linearized Power Detector)

  • 김희태;오재석;박의준;이영순;김병철
    • 한국전자파학회논문지
    • /
    • 제11권8호
    • /
    • pp.1386-1391
    • /
    • 2000
  • 본 논문에서는 다이오드의 비선형 특성을 선형화하고 온도에 따른 특성 변화를 보상하는 방법에 대해 연구하였다. 입력전력에 대한 다이오드의 비선형성을 선형화학 위해 Square root 회로를 사용하였으며, 온도에 따른 다이오드의 특성변화를 보상하기 위해서는 2개의 동일한 다이오드와 기준전위를 가변시킬 수 있는 OP-Amp를 사용하였다. 그 결과로써, (Square root 회로와 온도보상회로를 이용하여) 설계된 다이오드 전력 검출기는 입력전력이 -6㏈m보다 큰 경우에 0.23$\pm$0.025 V/㏈m의 비율로 선형적으로 출력전력을 검출하였으며, 상온에서 8$0^{\circ}C$까지의 온도변화에 대해 출력전압의 변화없이 안정적으로 동작하였다.

  • PDF

IIPS를 위한 빔 조향 n위상 광 ULSI 프로세서 디자인 (Design of Beam Steering n-phase OPTO-ULSI Processor for IIPS)

  • 이창기;임형규
    • 한국전자통신학회논문지
    • /
    • 제3권3호
    • /
    • pp.158-164
    • /
    • 2008
  • 본 논문은 다중기능 광 네트워크에 있어서 256위상 광 ULSI 프로세서를 구현하기 위한 최적위상 도출에 관해 연구한다. 이미 구성된 8위상 프로세서를 실험 및 평가를 위한 기반으로 사용한다. 이 연구에서는 액정의 비선형성을 상쇄시킬 수 있는 최적의 위상을 찾아내어 보다 큰 규모의 광 ULSI 프로세서 구현이 가능하게 한다. 이는 집적화된 지능형 광자유도 시스템(IIPS)에 사용되는 빔 조종 8위상 광 ULSI 프로세서에 기초하여 구현 된다.

  • PDF

Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상 (Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition)

  • 김희운;윤진규;허진
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

신경회로망을 이용한 2족 보행 로봇의 설계 및 구현 (Design and Implementation of a Biped Robot using Neural Network)

  • 이성수;박왈서
    • 조명전기설비학회논문지
    • /
    • 제26권10호
    • /
    • pp.89-94
    • /
    • 2012
  • This research is to apply the control of neuron networks for the real-time walking control of Multi-articulated robot. Multi-articulated robot is expressed with a complicated mathematical model on account of the mechanic, electric non-linearity which each articulation of mechanism has, and includes an unstable factor in time of walking control. If such a complex expression is included in control operation, it leads to the disadvantage that operation time is lengthened. Thus, if the rapid change of the load or the disturbance is given, it is difficult to fulfill the control of desired performance. This paper proposes a new mode to implement a neural network controller by installing a real object for controlling and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The proposed control algorithm generated control signs corresponding to the non-linearity of Multi-articulated robot, which could generate desired motion in real time.