• Title/Summary/Keyword: Non-Linear theory.

Search Result 481, Processing Time 0.026 seconds

Vibration analysis of heterogeneous nonlocal beams in thermal environment

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.251-272
    • /
    • 2017
  • In this paper, the thermo-mechanical vibration characteristics of functionally graded (FG) nanobeams subjected to three types of thermal loading including uniform, linear and non-linear temperature change are investigated in the framework of third-order shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. Hence, applying a third-order shear deformation beam theory (TSDBT) with more rigorous kinetics of displacements to anticipate the behaviors of FG nanobeams is more appropriate than using other theories. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The obtained results are compared with those predicted by the nonlocal Euler-Bernoulli beam theory and nonlocal Timoshenko beam theory and it is revealed that the proposed modeling can accurately predict the vibration responses of FG nanobeams. The obtained results are presented for the thermo-mechanical vibration analysis of the FG nanobeams such as the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

A NON-COMPACT GENERALIZATION OF HORVATH'S INTERSECTION THEOREM$^*$

  • Kim, Won-Kyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1995
  • Ky Fan's minimax inequality is an important tool in nonlinear functional analysis and its applications, e.g. game theory and economic theory. Since Fan gave his minimax inequality in [2], various extensions of this interesting result have been obtained (see [4,11] and the references therein). Using Fan's minimax inequality, Ha [6] obtained a non-compact version of Sion's minimax theorem in topological vector spaces, and next Geraghty-Lin [3], Granas-Liu [4], Shih-Tan [11], Simons [12], Lin-Quan [10], Park-Bae-Kang [17], Bae-Kim-Tan [1] further generalize Fan's minimax theorem in more general settings. In [9], using the concept of submaximum, Komiya proved a topological minimax theorem which also generalized Sion's minimax theorem and another minimax theorem of Ha in [5] without using linear structures. And next Lin-Quan [10] further generalizes his result to two function versions and non-compact topological settings.

  • PDF

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.

The Concept and Analysis of Redundant Information in Space Perception - Focused on the Works of NOX - (공간지각에 있어 잉여정보의 의미와 분석 - NOX의 공간을 중심으로-)

  • Kim, Joo-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.77-88
    • /
    • 2006
  • According to critics and architects, non-linear structure is not only an organic form of space, but also a form of space detached from modem style. Accordingly, non-linear structure can be accepted as an alternative to what has remained unsolved by deconstructionist. However, they are criticized for not clarifying the interdependent relationship between non-linearity of space and cognitive structure of human being. They ended up remaining the hypothesis just an intuitive and abstract one. This research began on the basis that their hypothesis is hard to be objectified, and it needs further inquiry. The purpose of this thesis is to explore how the redundant factors constitute non-linear structures of digital media centered space design. Geometric compositions of space structure were analyzed to define what types of redundant factors are contrived in the process of visual information. This study about the visual form, researching the Information Theory, and then offer a quantitative analysis that makes those more objective. Space structure and geometric composition were analyzed to define what types of redundancy are contrived in the process of visual information. In particular, I put higher theoretical emphasis on what characteristics are ensued in the process of structuring spaces than any other subjects. Followings are the conclusion of analysis. First, as a result of examining, we can assume that NOX' space structure is not a chaotic form, but has an operating the form of its own. Second, in case of curvilinear, the structure was found redundancy on mid deviation ratio and discontinuous circular fabric. Although most of their structures appeared complex with a higher coherent constant, they were found to be stable factors because of the low deviation ratio between systems. The amount of surplus information was stable structure as well.

STELLAR MAGNETIC ACTIVITY AND LONG TERM LUMINOSITY VARIATIONS OF LATE TYPE STARS.: II. STELLAR ACTIVITY PERIODS BASED ON PARKER'S DYNAMO THEORY

  • Park, Chang-Bum;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.2
    • /
    • pp.91-107
    • /
    • 1986
  • Making use of our extended version of $\ddot{O}pik's$ convection theory, we have calculated magnetic cycle periods of the sun and late type stars by using Parker's dynamo theory, where we have included the non-linear effect. We presented a relationship between the computed cycle period and spectral type to analyze observed magnetic activities of the late type stars and long-term luminosity variations. It is found that (1) the stellar magentic-cycle period increases towards the later spectral type, (2) the rapid rotation facilitates the activity-related luminosity variation of stars later than about K5, (3) differential rotation plays a critical role in determining the magnetic activity-cycle period, and (4) the non-local effect should be taken into account in order to understand the observed long-term luminosity variations.

  • PDF

A Design of Variable Structure Controller for the General Single Input Systems with Unmeasurable State Variables (측정불가능한 상태변수를 갖는 일반적인 단일 입력 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.773-783
    • /
    • 1992
  • There have been several control schemes for the single input systems with unmeasurable state variables using variable structure control(VSC) theory. However, each of them is a study on the systems which can be represented in the phase canonical form or non-phase canonical form dynamic equation separately. As these control algorithms have difficulties in practical application by its theoretical limitations, in this paper we propose a new VSC theory which overcomes those limitations, in this paper we propose a new VSC theory which overcomes those limitations of proposed schemes. This new control scheme can be realized for the general linear systems which have unmeasurable state variables. And the switching function of this VSS algorithm consists of measurable state variable function(reduced-order switching function) and its derivatives. Also in the construction of control imput only measurable state variables are used.

  • PDF

Vibration Characteristics of a Semi-circular Pipe Conveying Fluid with Both Ends Clamped (유체를 이송하는 양단 고정된 반원관의 면내/면외 진동 특성)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.252-257
    • /
    • 2004
  • Free vibration of a semi-circular pipe conveying fluid is analyzed when the pipe is clamped at both ends. To consider the geometric non-linearity, this study adopts the Lagrange strain theory and the extensibility of the pipe. By using the extended Hamilton principle, the non-linear partial differential equations are derived, which are coupled to the in-plane and out-of\ulcornerplant: motions. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies are computed from the linearized equations of motion in the neighborhood of the equilibrium position. From the results. the natural frequencies for the in-plane and out-of-plane motions are vary with the flow velocity. However, no instability occurs the semi-circular pipe with both ends clamped, when taking into account the geometric non-linearity explained by the Lagrange strain theory.

  • PDF

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.

A STUDY ON THE OPTIMAZATION OF CONSTRUCTION MANAGEMENT BY USING A DESIGN STRUCTURE MATRIX

  • Nobuyuki Suzuki;Aketo Suzuki
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.383-388
    • /
    • 2005
  • In the construction industry, complex works are carried out with significant resources under non-linear circumstances where clear concepts of project management could be of benefit to all parties and personnel involved. In this paper, we define the optimum project management configuration for construction management by using DSM (Design Structure Matrix). Furthermore DSM can be visualized as a network model, and then Graph Theory provides us the numerical results.

  • PDF