• 제목/요약/키워드: Non-Linear Inertia

검색결과 52건 처리시간 0.024초

기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석 (Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity)

  • 정진태;정두한
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

유체 봉입 마운트 선형 모형의 해석적 구성 기법 (An Analytic Technique for Making a Linear Model of a Hydraulic Mount)

  • 이준화;김광준;원광민;강구태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.410-415
    • /
    • 2001
  • Hydraulic mounts have been used as an alternative to the conventional rubber mounts for they can provide more desirable stiffness and damping properties which may vary with frequency and excitation amplitude. Although a lumped-parameter non-linear model of the hydraulic mount developed by a simple fluid dynamic analysis can be successfully used for representing the inertia track dynamics, a linear model is still preferred. In this paper, an analytic technique for making a linear model of the hydraulic mount is proposed.

  • PDF

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • 제13권3호
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

Flapwise and non-local bending vibration of the rotating beams

  • Mohammadnejad, Mehrdad;Saffari, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.229-244
    • /
    • 2019
  • Weak form integral equations are developed to investigate the flapwise bending vibration of the rotating beams. Rayleigh and Eringen nonlocal elasticity theories are used to investigate the rotatory inertia and Size-dependency effects on the flapwise bending vibration of the rotating cantilever beams, respectively. Through repetitive integrations, the governing partial differential equations are converted into weak form integral equations. The novelty of the presented approach is the approximation of the mode shape function by a power series which converts the equations into solvable one. Substitution of the power series into weak form integral equations results in a system of linear algebraic equations. The natural frequencies are determined by calculation of the non-trivial solution for resulting system of equations. Accuracy of the proposed method is verified through several numerical examples, in which the influence of the geometry properties, rotatory inertia, rotational speed, taper ratio and size-dependency are investigated on the natural frequencies of the rotating beam. Application of the weak form integral equations has made the solution simpler and shorter in the mathematical process. Presented relations can be used to obtain a close-form solution for quick calculation of the first five natural frequencies of the beams with flapwise vibration and non-local effects. The analysis results are compared with those obtained from other available published references.

필름 이송 시스템의 강인한 장력 제어에 관한 연구 (A study on the Design of a Robust Tension Controller in Film Transfer System)

  • 양희철;윤석찬;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.327-331
    • /
    • 1997
  • This paper presents the non-linear modeling and design of a robust sliding mode controller for film transfer systems. The tension of a film is sensitive to the speed difference between a winder and an unwinder. The change of the roll-radius as well as the moment of inertia result in the film transfer system begin variable and non-linear. In designing the robust controller. Two major aims are considered. The first aim is hat the web transferring speed tracks at any given reference speed; the second one is that the tension of the film tracks at any given reference tension. To verify the control algorithm, a Simulink model was built and compared with a conventional PID controller. In a computer simulation study, the suggested robust sliding mode controller shows better performance than the PID controller a various control inputs.

  • PDF

점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동 (Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF

점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동 (Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.372-372
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

투과성 해안구조물의 소상파 및 내부수위변동에 관한 수치모델링 (Numerical Modeling of Wave Run-up and Internal Set-up on and in Permeable Coastal Structures)

  • 남인식;김종욱;류청로
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.34-40
    • /
    • 2002
  • A numerical model has been developed for the permeable coastal structures to simulate hydraulic characteristics on the permeable slopes, which interact with internal four field the structures. The model includes hydraulics in the porous medium. Numerical model was calibrated using hydraulic model experiments performed in 2-D wave flume in the Institute of Ocean Hydraulics in PKNU. Better aggrements were obtained with the model which employed inertia resistance term than with the conventional model, PBREAK.

투과성해안구조물의 소상파 및 내부수위변동에 관한 수치모델링 (Numerical modeling of wave run-up and internal setup on and in permeable coastal structures)

  • 남인식;윤한삼;김종욱;류청로
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.172-179
    • /
    • 2001
  • A numelical model has been developed for the permeable coastal structures to simulate hydraulic characteristics on the permeable slopes, which interact with internal flow field of the structures. The model includes hydraulics in the porous medium. Numerical model was calibrated using hydraulic model experiments performed in 2-D wave flume in the Institute of Orean Hydraulics in PKNU. Good agreement were obtained with the model which employed inertia resistance term than with the conventional model, PBREAK.

  • PDF

엑스플리시트 시간 적분 유한요소법을 이용한 고속 성형 해석 (I) -마찰 및 관성 효과- (An Analysis of High Speed Forming Using the Explicit Time Integration Finite Element Method (I) -Effects of Friction and Inertia Force-)

  • 유요한;정동택
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 1991
  • 본 연구에서는 고속 대변형 탄소성 변형 과정을 해석할 수 있는 프로그램(NET )을 개발하고 이것을 실린더 및 링 성형 문제에 적용하여 마찰 및 관성 효과가 변형 거동에 미치는 영향을 규명하여 보았다.