• Title/Summary/Keyword: Non-Contacting Inspection

Search Result 10, Processing Time 0.024 seconds

Development of Non-Contacting Automatic Inspection Technology of Precise Parts (정밀부품의 비접촉 자동검사기술 개발)

  • Lee, Woo-Sung;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

Non-contacting OMM (On Machine Measurement) based on CAD Model (CAD 모델 기반 비접촉 기상 측정에 관한 연구)

  • 권세진;이정근;박정환;고태조;김선호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.134-141
    • /
    • 2003
  • An industrial product is designed and fabricated, followed by the inspection process in order to check whether it is dimensionally tolerable or not. The machining process produces a part such as a mold or die, in which the three-dimensional coordinate might be measured by a CMM (Coordinate Measuring Machine) for assessment of its dimension. It is not ignorable, however, that a CMM measurement requires a lot of operating time and cost, which has led to many studies on the OMM system. The OMM system can be categorized into contact and non-contact types, and each of which has its own strengths and weaknesses. Non-contacting types generally utilize structured lights, sounds or magnetic fields. Though they show rather poor performance in positional accuracy, the measuring speed is faster than the contacting probes. This paper presents the development of an OMM system based on a non-contacting laser displacement sensing apparatus and CAD model. The system is composed of software modules of center-aligning and measuring, which has been operated and verified on a NC machining center on a shop floor.

Experimental Study for Defects Inspection of CFRP Using Laser-Generated Ultrasound

  • Lee, Joon-Hyun;Park, Won-Su;Byun, Joon-Hyung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.41-45
    • /
    • 2006
  • The fabrication process of fiber placement system of carbon fiber reinforced plastic (CFRP) requires real time process control and reliable inspection to ensure quality by preventing defects such as delamination and void. Therefore, novel non-contact inspection technique is required during the non-destructive evaluation in a fiber placement system. For the inspection of delamination in CFRP, various methods to receive laser-generated ultrasound were applied by using piezoelectric transducer, air-coupled transducer, wavelet transform and scanning laser ultrasonic technique. Laser-generated ultrasound was received with a conventional piezoelectric sensor in contacting manner. Then signal characteristics due to defects were analyzed to find a factor for detecting defects. Air-coupled transducer was used for reception of laser-generated guided wave using linear slit array in order to generate high frequency guided wave. And line scan technique was used to confirm the capability of on-line application. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer. The first peak of the frequency spectrum under 100kHz in the delamination region is higher than in the sound region. By using this feature, the line scanned frequency data were acquired in fully non-contact generation and reception of ultrasound. This method was proved as useful technique for detecting delamination in CFRP.

  • PDF

Development of Elimination Method of Measurement noise to Improve accuracy for White Light Interferometry (백색광 간섭계의 정밀도 향상을 위한 노이즈 제거 방법)

  • Ko, Kuk-Won;Cho, Soo-Yong;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.519-522
    • /
    • 2008
  • As industry of a semiconductor and LCD industry have been rapidly growing, precision technologies of machining such as etching and 3D measurement are required. Stylus has been important measuring method in traditional manufacturing process. However, its disadvantages are low measuring speed and damage possibility at contacting point. To overcome mentioned disadvantage, non-contacting measurement method is needed such as PMP(Phase Measuring Profilometry), WSI(white scanning interferometer) and Confocal Profilometry. Among above 3 well-known methods, WSI started to be applied to FPD(flat panel display) manufacturing process. Even though it overcomes 21t ambiguity of PMP method and can measure objects which has specular surface, the measuring speed and vibration coming from manufacturing machine are one of main issue to apply full automatic total inspection. In this study, We develop high speed WSI system and algorithm to reduce unknown noise. The developing WSI and algorithm are implemented to measure 3D surface of wafer. Experimental results revealed that the proposed system and algorithm are able to measure 3D surface profile of wafer with a good precision and high speed.

A Study on Automatic Inspection Technology of Machinery Parts Based on Pattern Recognition (패턴인식에 의한 기계부품 자동검사기술에 관한 연구)

  • Cha, Bo-Nam;Roh, Chun-Su;Kang, Sung-Ki;Kim, Won-il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

Detection of a Surface-Breaking Crack Using the Surface Wave of a Laser Ultrasound (레이저 초음파의 표면파를 이용한 표면결함 측정)

  • Park, Seung-Kyu;Jung, Hyun-Kyu;Baik, Sung-Hoon;Lim, Chang-Hwan;Joo, Young-Sang;Kang, Young-June
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasounds by using laser beams. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this paper, we have investigated the detection techniques of a surface-breaking crack by using the laser ultrasonic surface waves. A crack acts as a low pass filter whose cut-off frequency is lowered in proportion to the depth of a crack. And, the center frequency value of a spectrum is decreased in proportion to the depth of a crack. In this paper, we extracted the crack information by using the frequency attenuation from the normalized transfer function spectrum of a surface-breaking crack. Also, we effectively measured the crack depth by using the decreasing value of the center frequency from a crack passed ultrasonic signal. The proposed measuring techniques of crack depths provided more precise information than the amplitude measuring technique.

Development of Robot Vision Technology for Real-Time Recognition of Model of 3D Parts (3D 부품모델 실시간 인식을 위한 로봇 비전기술 개발)

  • Shim, Byoung-Kyun;Choi, Kyung-Sun;jang, Sung-Cheol;Ahn, Yong-Suk;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.113-117
    • /
    • 2013
  • This paper describes a new technology to develop the character recognition technology based on pattern recognition for non-contacting inspection optical lens slant or precision parts, and including external form state of lens or electronic parts for the performance verification, this development can achieve badness finding. And, establish to existing reflex data because inputting surface badness degree of scratch's standard specification condition directly, and error designed to distinguish from product more than schedule error to badness product by normalcy product within schedule extent after calculate the error comparing actuality measurement reflex data and standard reflex data mutually. Developed system to smallest 1 pixel unit though measuring is possible 1 pixel as $37{\mu}m{\times}37{\mu}m$ ($0.1369{\times}10-4mm^2$) the accuracy to $1.5{\times}10-4mm$ minutely measuring is possible performance verification and trust ability through an experiment prove.

Measurement of Internal Defects of Pressure Vessels using Unwrapping images in Digital Shearography (Digital Shearography 에서 Unwrapping 이미지와 FEM 을 이용한 압력용기의 내부결함 측정)

  • Kim, Seong-Jong;Kang, Young-June;Sung, Yeon-Hak;Ahn, Yong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Pressure vessels in vehicle industries, power plants, and chemical industries are often affected by flaw and defect generated inside the pressure vessels due to production processes or being used. It is very important to detect such internal defects of pressure vessel because they sometimes bring out serious problems. In this paper, an optical defect detection method using digital shearography is used. This method has advantages that the inspection can be performed at a real time measurement and is less sensitive to environmental noise. Shearography is a laser-based technique for full-field, non-contacting measurement of surface deformation (displacement or strain). The ultimate goal of this paper is to detect flaws in pressure vessels and to measure the lengths of the flaws by using unwrapping, phase images which are only obtained by Phase map. Through this method, we could decrease post-processing (next processing). Real length of a pixel can be calculated by comparing minimum and maximum unwrapping images with shearing angle. Through measuring several specimen defects which have different lengths and depths of defect, it can be possible to interpret quantitatively by calculating gray level.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.