• Title/Summary/Keyword: Non-$CO_2$

Search Result 2,589, Processing Time 0.029 seconds

Effect of severe acute respiratory syndrome coronavirus 2 infection during pregnancy in K18-hACE2 transgenic mice

  • Byeongseok, Kim;Ki Hoon, Park;Ok-Hee, Lee;Giwan, Lee;Hyukjung, Kim;Siyoung, Lee;Semi, Hwang;Young Bong, Kim;Youngsok, Choi
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.43-52
    • /
    • 2023
  • Objective: This study aimed to examine the influence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on pregnancy in cytokeratin-18 (K18)-hACE2 transgenic mice. Methods: To determine the expression of hACE2 mRNA in the female reproductive tract of K18-hACE2 mice, real-time polymerase chain reaction (RT-PCR) was performed using the ovary, oviduct, uterus, umbilical cord, and placenta. SARS-CoV-2 was inoculated intranasally (30 μL/mouse, 1×104 TCID50/mL) to plug-checked K18-hACE2 homozygous female mice at the pre-and post-implantation stages at 2.5 days post-coitum (dpc) and 15.5 dpc, respectively. The number of implantation sites was checked at 7.5 dpc, and the number of normally born pups was investigated at 20.5 dpc. Pregnancy outcomes, including implantation and childbirth, were confirmed by comparison with the non-infected group. Tissues of infected mice were collected at 7.5 dpc and 19.5 dpc to confirm the SARS-CoV-2 infection. The infection was identified by performing RT-PCR on the infected tissues and comparing them to the non-infected tissues. Results: hACE2 mRNA expression was confirmed in the female reproductive tract of the K18-hACE2 mice. Compared to the non-infected group, no significant difference in the number of implantation sites or normally born pups was found in the infected group. SARS-CoV-2 infection was detected in the lungs but not in the female reproductive system of infected K18-hACE2 mice. Conclusion: In K18-hACE2 mice, intranasal infection with SARS-CoV-2 did not induce implantation failure, preterm labor, or miscarriage. Although the viral infection was not detected in the uterus, placenta, or fetus, the infection of the lungs could induce problems in the reproductive system. However, lung infections were not related to pregnancy outcomes.

Stydies on the Hexagonal Ferrites(II) The Nagnetostricton pf Ferroxplana $Co_{1-x}Zn_xZ$($BA_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41}$)) (Hexagonal Ferrite 에 관한 연구(II) Ferroxplana $Co_{1-x}Zn_xZ$($BA_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41}$)의 Magnetostriction)

  • 김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.13 no.4
    • /
    • pp.5-8
    • /
    • 1976
  • Both oriented and non-oriented ferroxplana $Co_{1-x}Zn_xZ(Ba_3Co_{2(1-x)}Zn_{2x} Fe_{24}O_{41})$ with x=0.00, 0.45 were prepared by conventional ceramic method. The magnetostrictions of thus prepared specimens were measured by use of the three terminal capacitor device at room temperature. The magnitude of measured values was approximately five times greater than that of ZnY ferroxplana. The easy-magnetization plane at room temperature of both CoZ and Co0.55 $Zn_{0.45}$Z was their basal plane. The magentostrictions in the basal plane and the other planes showed saturated values at magnetic field intensity of about 2Koe and 4Koe, respectively. The magnetostriction constants $K_1, \; K_2, \;K_3\; and\; K_4$ for CoZ were -2.4, -10.5, -5.9 and -45.2$\times10^{-6}$ , while those for $Co_{0.55}Zn_{0.45}Z$ were +0.1, -1.2, -6.3 and -39.0$\times$10^{-6}, , respectively.

  • PDF

Effects of Leukocyte Depleted Priming Solution on Cardiopulmonary Edema by Extracorporeal Circulation (백혈구제거 혈액성 충진액이 체외순환 후 심폐부종에 미치는 영향)

  • Kim, Si-Hoon;Kim, Young-Du;Jin, Ung;Jo, Keon-Hyun
    • Journal of Chest Surgery
    • /
    • v.34 no.9
    • /
    • pp.704-710
    • /
    • 2001
  • Background: Extracorporeal circulation using pump-oxygenator is an inevitable process to keep vital sign during cardiac arrest for open heart surgery. However, the diversion of blood through nonendothelialized channels appears to stimulate inflammatory response, and leukocyte activation may lead to cardiopulmonary edema. Our study evaluated the effect of leukocyte-induced cardiopulmonary edema using three different pump-oxygenator priming solutions; non-hemic crystalloid solution ; leukocyte-depleted homologous blood; non leukocyte-depleted homologous blood in priming solutions. Material and Method: Each different priming solution was used on five dogs, and the effect of leukocyte-induced cardiopulmonary edema during cardiopulmonary bypass(CPB) was evaluated. For each dog after 2 hours of exracorporeal circulation and another 4 hours of post-pump period, the dog was sacrificed and its heart and lung tissues were obtained for measuring Wet/Dry ratio. Arterial $O_2$partial pressure(PaO$_2$) and $CO_2$partial pressure(Pa$CO_2$) were checked. For the evaluation of ventilatory function, $CO_2$partial pressure difference between arterial blood (Pa$CO_2$) and exhaled air(Et$CO_2$) was measured. Result: 1. No significant difference was seen in arterial PaO$_2$and Pa$CO_2$among groups. 2. Ventilatory function evaluated by Pa$CO_2$and Et$CO_2$showed no significant difference between non-hemic and blood-mixed priming solution (P<0.05). 3. Cardiac and lung Wet/Dry ratios were remarkedly lower in the leukocyte-depleted group. There was no significant difference between the non-hemic and blood-mixed groups. Conclusion: Based upon this result, we concluded that the leukocyte depletion from homologous blood of CPB priming solution has a beneficial effect in reducing cardiopulmonary edema compared with non leukocyte-depleted or crystalloid priming solutions.

  • PDF

Development of NDIR CO2 Gas Detector Using Thermopile Sensor (써모파일 센서를 이용한 NDIR CO2 가스검출기의 개발)

  • Cho, Si-Hyung;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.35-38
    • /
    • 2012
  • We present a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. Using this thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Kinetic Studies of CO2 Gasification by Non-isothermal Method on Fly Ash Char (비등온법에 의한 비산재 촤의 CO2 가스화 특성)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Jin-Wook;Yun, Yongseung;Kim, Gyoo Tae;Kim, Yongjeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.493-499
    • /
    • 2013
  • For the purpose of utilizing fly ash from gasification of low rank coal, we performed the series of experiments such as pyrolysis and char-$CO_2$ gasification on fly ash by using the thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10, 20 and $30^{\circ}C/min$). Pyrolysis rate has been analyzed by Kissinger method as a first order, the reliability of the model was lower because of the low content of volatile matter contained in the fly ash. The experimental results for the fly ash char-$CO_2$ gasification were analyzed by the shrinking core model, homogeneous model and random pore model and then were compared with them for the coal char-$CO_2$ gasification. The fly ash char (LG coal) with low-carbon has been successfully simulated by the homogeneous model as an activation energy of 200.8 kJ/mol. In particular, the fly ash char of KPU coal with high-carbon has been successfully described by the random pore model with the activation energy of 198.3 kJ/mol and was similar to the behavior for the $CO_2$ gasification of the coal char. As a result, the activation energy for the $CO_2$ gasification of two fly ash chars don't show a large difference, but we can confirm that the models for their $CO_2$ gasification depend on the amount of fixed carbon.

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate (폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교)

  • Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.34-41
    • /
    • 2022
  • Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

Ambient CO2 Adsorption and Regeneration Performance of Zeolite and Activated Carbon (제올라이트와 활성탄을 이용한 대기 중 CO2 흡착 및 재생 특성)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Byum-Seok;Kang, Ho-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.307-311
    • /
    • 2013
  • Direct Air Capture (DAC) technology using reusable energy is a plausible process to capture $CO_2$ from non-point sources. In this paper, adsorption and desorption were repeatedly tested using low concentration $CO_2$. Three types of adsorbents were examined in cyclic $CO_2$ adsorption and thermal regeneration. Adsorption capacities of zeolite 5A, zeolite 13X and activated carbon were 21 mg/g, 12 mg/g and 6 mg/g, respectively. Zeolite 5A shows the highest adsorption capacities after cyclic thermal regeneration.

The Effect of Oxygen and Carbon Dioxide Concentration on Soot Formation in Nonpremixed Flames Using Time Resolved LII Technique

  • Oh, Kwang-Chul;Shin, Hyun-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2068-2076
    • /
    • 2005
  • The influence of oxygen concentration and CO$_{2}$ as diluent in oxidizer side on soot characteristics was studied by Laser Induced Incandescence, Time Resolved LII and Transmission Electron Microscopy photography in non-premixed co flowing flames. Through the comparison of TEM photographs and the decay rate of LII signal, suitable two delay times of TIRE-LII method and signal sensitivity ($\Delta$S$_{TIRE-LII/) were determined. The effects of O$_{2}$ and CO$_{2}$ as diluent in oxidizer side on soot formation are investigated with these calibrated techniques. The O$_{2}$+CO$_{2}$, N$_{2}$, and [Ar+CO$_{2}$] mixture in co-flow were used to isolate CO2 effects systematically. The number concentration of primary particle and soot volume fraction abruptly decrease by the addition of CO$_{2}$ to the co-flow. This suppression is resulted from the short residence time in inception region because of the late nucleation and the decrease of surface growth distance by the low flame temperature due to the higher thermal capacity and the chemical change of CO$_{2}$ including thermal dissociation. As the oxygen concentration increases, the number concentration of soot particles at the inception region increases and thus this increase of nucleation enhances the growth of soot particle.

Exploring Rational Design of Single-Atom Electrocatalysts for Efficient Electrochemical Reduction of CO2 to CO

  • Joonhee Ma;Jin Hyuk Cho;Kangwon Lee;Soo Young Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.29-46
    • /
    • 2023
  • The electrochemical reduction of carbon dioxide (CO2) to value-added products is a remarkable approach for mitigating CO2 emissions caused by the excessive consumption of fossil fuels. However, achieving the electrocatalytic reduction of CO2 still faces some bottlenecks, including the large overpotential, undesirable selectivity, and slow electron transfer kinetics. Various electrocatalysts including metals, metals oxides, alloys, and single-atom catalysts have been widely researched to suppress HER performance, reduce overpotential and enhance the selectivity of CO2RR over the last few decades. Among them, single-atom catalysts (SACs) have attracted a great deal of interest because of their advantages over traditional electrocatalysts such as maximized atomic utilization, tunable coordination environments and unique electronic structures. Herein, we discuss the mechanisms involved in the electroreduction of CO2 to carbon monoxide (CO) and the fundamental concepts related to electrocatalysis. Then, we present an overview of recent advances in the design of high-performance noble and non-noble singleatom catalysts for the CO2 reduction reaction.

Synthesis and Characterization of CuCo2O4 Nanofiber Electrocatalyst for Oxygen Evolution Reaction (산소발생반응을 위한 CuCo2O4 나노섬유 전기화학 촉매 합성 및 특성 분석)

  • Won, Mi So;Jang, Myeong-Je;Lee, Kyu Hwan;Kim, Yang Do;Choi, Sung Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.539-548
    • /
    • 2016
  • The non-noble 1D nanofibers(NFs) prepared by electrospinning and calcination method were used as oxygen evolution reaction (OER) electrocatalyst for water electrolysis. The electrospinning process and rate of solution composition was optimized to prepare uniform and non-beaded PVP polymer electrospun NFs. The diameter and morphology of PVP NFs changed in accordance with the viscosity and ion conductivity. The clean metal precursor contained electrospun fibers were synthesized via the optimized electrospinning process and solution composition. The calcined $CuCo_2O_4$ NFs catalyst showed higher activity and long-term cycle stability for OER compared with other $Co_3O_4$, $NiCo_2O$ NF catalysts. Furthermore, the $CuCo_2O_4$ NFs maintained the OER activity during long-term cycle test compared with commercial $CuCo_2O_4$ nanoparticle catalyst due to unique physicochemical and electrochemical properties by1D nanostructure.