• Title/Summary/Keyword: Non dimensional Variables

Search Result 167, Processing Time 0.029 seconds

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method (삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design (원심다익송풍기의 고효율 설계를 위한 수치최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

LAS-Derived Determination of Surface-Layer Sensible Heat Flux over a Heterogeneous Urban Area (섬광계를 이용한 비균질 도시 지표에서의 현열속 산정)

  • Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.193-203
    • /
    • 2015
  • A large aperture scintillometer (LAS) was deployed with an optical path length of 2.1 km to estimate turbulent sensible heat flux (${\mathcal{Q}}_H$) over a highly heterogeneous urban area. Scintillation measurements were conducted during cold season in November and December 2013, and the daytime data of 14 days were used in the analysis after quality control processes. The LAS-derived ${\mathcal{Q}}_H$ show reasonable temporal variation ranging $20{\sim}160W\;m^{-2}$ in unstable atmospheric conditions, and well compare with the measured net radiation. The LAS footprint analysis suggests that ${\mathcal{Q}}_H$ can be relatively high when the newly built-up urban area has high source contribution of the turbulent flux in the study area ('northwesterly winds'). Sensitivity tests show that the LAS-derived ${\mathcal{Q}}_H$ are highly sensitive to non-dimensional similarity function for temperature structure function parameter, but relatively less sensitive to surface aerodynamic parameters and meteorological variables (temperature and wind speed). A lower Bowen ratio also has a significant influence on the flux estimation. Overall uncertainty of the estimated daytime ${\mathcal{Q}}_H$ is expected within about 20% at an upper limit for the analysis data. It is also found that stable atmospheric conditions can be poorly determined when the scintillometry technique is applied over the highly heterogeneous urban area.

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF

A Study on the Vibration Analysis and Optimization for the Composite Optical Structure of an Aircraft (복합재료를 적용한 항공기용 카메라 구조 경량화 설계 및 최적조건 선정에 관한 연구)

  • Kim, Byeong-Jun;Lee, Jun-Ho;Lee, Haeng-Bok;Jung, Dae-Yoon;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.230-235
    • /
    • 2012
  • This paper presents the vibration characteristics and the optimization using the orthogonal array about applied composite optical structure of an aircraft. To acquire the vibration characteristics for stable line of sight, modal analysis are performed by using multi-body program ADAMS. And to optimize optical structure, for design variables were selected, larger-the-better characteristics were considered using results of S/N ratio and orthogonal array $L_9(3^4)$. When bearing constraints are selected, radial, axial and moment stiffness value are used to analysis for optimization until now. But B.S.R which is non-dimensional parameter is proposed, structures including bearings can be used for optimization. And then having a result of lager-the-better, the optimized values of each design variable were successfully suggested.

Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis (삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계)

  • Seo, Seoung-Jin;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

Numerical and experimental study of the nested-eccentric-cylindrical shells damper

  • Reisi, Alireza;Mirdamadi, Hamid Reza;Rahgozar, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.637-648
    • /
    • 2020
  • In this study, a new steel cylindrical shell configuration of the dissipative energy device is proposed to improve lateral ductility and to reduce the damage of the structures against seismic forces. Four nested-eccentric- cylindrical shells are used to constructing this device; therefore, this proposed device is named nested-eccentric-cylindrical shells damper (NECSD). The particular configuration of the nested-eccentric-cylindrical shells is applied to promote the mechanical characteristics, stability, and overall performance of the damper in cyclic loads. Shell-type components are performed as a combination of series and parallel non-linear springs into the in-plan plastic deformation. Numerical analysis with respect to dimensional variables are used to calculate the mechanical characteristics of the NECSD, and full-scale testing is conducted for verifying the numerical results. The parametric study shows the NECSD with thin shells were more flexible, while devices with thick shells were more capacious. The results from numerical and experimental studies indicate that the NECSD has a stable behavior in hysteretic loops with highly ductile performance, and can provide appropriate dissipated energy under cyclic loads.

Optimization of extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape (고온초전도 BSCC02223 장선재 제조를 위한 압출공정의 최적화)

  • Cho, Ki-Hyun;Choi, Jong-Ung;Yoo, Jim-Moo;Ko, Jae-Woong;Kim, Hai-Doo
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.230-235
    • /
    • 2000
  • The extrusion process for long-length multi-filaments of BSCCO 2223 superconductor tape has been investigated with aids of Finite Element Method and experimental inspection. Since the arrangement of filaments in matrix material has characteristic of rotational symmetry, a 2-dimensional commercial FEM package, DEFORM-2D, was adopted to simulate extrusion process with different variables such as hardness of sheath material, lengths of each filament and arrangement. From the FEM analysis, since the inner filaments move faster than the outer one, distribution of filaments is needed to be optimized. In the case of pure Ag matrix, undesirable non-uniform distribution of filament was obtained due to low hardness of sheath material. Dummy sample(brass (sheath) and talc powder(filament)), however, which has relatively high hardness of sheath material, had been produced with desirable results. Therefore, it is necessary to optimize hardness of sheath material, extrusion temperature and billet design.

  • PDF

An Empirical Central Limit Theorem for the Kaplan-Meier Integral Process on [0,$\infty$)

  • Bae, Jong-Sig
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.231-243
    • /
    • 1997
  • In this paper we investigate weak convergence of the intergral processes whose index set is the non-compact infinite time interval. Our first goal is to develop the empirical central limit theorem as random elements of [0, .infty.) for an integral process which is constructed from iid variables. In developing the weak convergence as random elements of D[0, .infty.), we will use a result of Ossiander(4) whose proof heavily depends on the total boundedness of the index set. Our next goal is to establish the empirical central limit theorem for the Kaplan-Meier integral process as random elements of D[0, .infty.). In achieving the the goal, we will use the above iid result, a representation of State(6) on the Kaplan-Meier integral, and a lemma on the uniform order of convergence. The first result, in some sense, generalizes the result of empirical central limit therem of Pollard(5) where the process is regarded as random elements of D[-.infty., .infty.] and the sample paths of limiting Gaussian process may jump. The second result generalizes the first result to random censorship model. The later also generalizes one dimensional central limit theorem of Stute(6) to a process version. These results may be used in the nonparametric statistical inference.

  • PDF