• Title/Summary/Keyword: Non Linear Factor

Search Result 403, Processing Time 0.024 seconds

A Novel Weighting Factor Method in NLOS Environment

  • Guan, Xufeng;Hur, SooJun;Choi, JeongHee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.2
    • /
    • pp.108-116
    • /
    • 2011
  • Non-line-of-sight (NLOS) error is the most common and also a major source of errors in wireless location system. A novel weighting factor (NWF) method is presented in this paper, based on the RSS(Received Signal Strength) measurements, path loss model and Circular Disk of Scatterers Model (CDSM). The proposed positioning method effectively weighted the TOA distance measurements for each Base Station (BS). Simulation results show that the proposed method efficiently weighted the distance measurements and achieve higher localization accuracy than that of Linear Line of Position (LLOP) and Believable Factor Algorithm (BFA).

Evaluation of seismic performance factors for tension-only braced frames

  • Shariati, Mahdi;Lagzian, Majid;Maleki, Shervin;Shariati, Ali;Trung, Nguyen Thoi
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.599-609
    • /
    • 2020
  • The tension-only braced frames (TOBFs) are widely used as a lateral force resisting system (LFRS) in low-rise steel buildings due to their simplicity and economic advantage. However, the system has poor seismic energy dissipation capacity and pinched hysteresis behavior caused by early buckling of slender bracing members. The main concern in utilizing the TOBF system is the determination of appropriate performance factors for seismic design. A formalized approach to quantify the seismic performance factor (SPF) based on determining an acceptable margin of safety against collapse is introduced by FEMA P695. The methodology is applied in this paper to assess the SPFs of the TOBF systems. For this purpose, a trial value of the R factor was first employed to design and model a set of TOBF archetype structures. Afterwards, the level of safety against collapse provided by the assumed R factor was investigated by using the non-linear analysis procedure of FEMA P695 comprising incremental dynamic analysis (IDA) under a set of prescribed ground motions. It was found that the R factor of 3.0 is appropriate for safe design of TOBFs. Also, the system overstrength factor (Ω0) was estimated as 2.0 by performing non-linear static analyses.

Software Cost Estimation Model Based on Use Case Points by using Regression Model (회귀분석을 이용한 UCP 기반 소프트웨어 개발 노력 추정 모델)

  • Park, Ju-Seok;Yang, Hea-Sool
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.147-157
    • /
    • 2009
  • Recently, there has been continued research on UCP from the development effort estimation method to a software development project applying object oriented development methodology. Current research proposes a linear model estimating the developmenteffort by multiplying a constant to AUCP which applies technical and environmental factors. However, the fact that a non-linear regression model is more appropriate as the software size increases, the development period increases exponentially. In addition, in the UCP calculation process the occurrence of FP errors due to the application of TCF and EF, it is unrealistic to estimate the size with AUCP. This paper presents the issue of current research based on UCP without considering problems of the research, for example, TCF and EF and expresses the models (linear, logarithmic, polynomial, power and exponential type) estimating the development effort directly from UUCP. Consequently, the exponential model within non-linear models exhibit more accurate results than the current linear model. Therefore, after calculating the UUCP of the developing software system, using the proposed model to estimate the development effort, it is possible to estimate the direct cost required in development.

Study of the Non-linear Relationships between Watershed Land Use and Biological Indicators of Streams - The Han River Basin - (유역 토지이용과 하천 생물지수의 비선형적 관계 연구 - 한강권역을 대상으로 -)

  • Park, Se-Rin;Lee, Jong-Won;Park, Yu-Jin;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.2
    • /
    • pp.55-67
    • /
    • 2022
  • Land use is a critical factor that affects the hydrological characteristics of watersheds, thereby determining the biological condition of streams. This study analyzes the effects of land uses in the watersheds on biological indicators of streams across the Han River basin using a linear model (LM) and generalized additive model (GAM). LULC and biological monitoring data of streams were obtained from the Korean Ministry of Environment. The proportions of urban, agricultural, and forest areas in the watersheds were regressed to the three biological indicators, including diatom, benthic macroinvertebrate, and fish of streams. The estimated LM and GAM models for the biological indicators were then compared, using regression determination R2 and AIC values. The results revealed that GAM models performed better than the LM models in explaining the variances of biological indicators of streams, indicating the non-linear relationships between biological indicators and land uses in watersheds. Also, the results suggested that the indicator of macroinvertebrates was the most sensitive indicator to land uses in watersheds. Although non-linear relationships between watershed land uses and biological indicators of streams could vary among biological indicators, it was consistent that streams' biological integrity significantly deteriorated by a relatively low percentage of urban areas. Meanwhile, biological indicators of streams were negatively affected by the relatively high percentage of agricultural areas. The results of this study can be integrated into effective quantitative criteria for the watershed management and land use plans to enhance the biological integrity of streams. In specific, land uses management plans in watersheds may need more close attention to urban land use changes than agricultural land uses to sustain the biological integrity of streams.

Estimation of Soil Organic Carbon Stock in South Korea

  • Thi, Tuyet-May Do;Le, Xuan-Hien;Van, Linh Nguyen;Yeon, Minho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.159-159
    • /
    • 2022
  • Soil represents a substantial component within the global carbon cycle and small changes in the SOC stock may result in large changes of atmospheric CO2 particularly over tens to hundreds of years. In this study, we aim to (i) evaluate the SOC stock in the topsoil 0 - 15 cm from soil physical and chemical characteristics and (ii) find the correlation of SOC and soil organic matter (SOM) for national-scale in South Korea. First of all, based on the characteristics of the soil to calculate the soil hydraulic properties, SOC stock is the SOC mass per unit area for a given depth. It depends on bulk density (BD-g/cm3), SOC content (%), the depth of topsoil (cm), and gravel content (%). Due to insufficient data on BD observation, we establish a correlation between BD and SOC content, sand content, clay content parameter. Next, we present linear and non-linear regression models of BD and the interrelationship between SOC and SOM using a linear regression model and determine the conversion factor for them, comparing with Van Bemmelen 1890's factor value for the country scale. The results obtained, helps managers come up with suitable solutions to conserve land resources.

  • PDF

Variability of subgrade reaction modulus on flexible mat foundation

  • Jeong, Sangseom;Park, Jongjeon;Hong, Moonhyun;Lee, Jaehwan
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.757-774
    • /
    • 2017
  • The subgrade reaction modulus of a large mat foundation was investigated by using a numerical analysis and a field case study. The emphasis was on quantifying the appropriate method for determining the subgrade reaction modulus for the design of a flexible mat foundation. A series of 3D non-linear FE analyses are conducted with special attention given to the subgrade reaction modulus under various conditions, such as the mat width, mat shape, mat thickness, and soil condition. It is shown that the distribution of the subgrade reaction modulus is non-uniform and that the modulus of subgrade reaction at both the corners and edges should be stiffer than that at the center. Based on the results obtained, a simple modification factor for the subgrade reaction modulus is proposed depending on the relative positions within the foundation in weathered soil and rocks.

Influence Factors Affecting the Longitudinal Force of Continuous Welded Rail on Railroad Bridges (장대레일 철도 교량의 축력 영향인자 분석)

  • Kim Kyung Sam;Han Sang Yun;Lim Nam Hyoung;Kang Young Jong
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.385-390
    • /
    • 2003
  • Recently, use of Continuous Welded rail(CWR) is increased for structural, economical reason but new problem is caused accordingly and phenomenon that give threat in traveling by ship stability of train is led. According as rail is prolonged, excessive relative displacement and longitudinal force can happen to rail by temperature change and external force. Specially, buckling or fracture of rail can happen in railroad bridges because relative displacement by bridge and properties of matter difference between rail grows and additional axial force happens to rail by behavior of bridge. According to several study, longitudinal force of rail in bridge is influenced with ballast resistance, elongation length, boundary condition, stiffness of framework. Non-linear behavior of ballast acts by the most important factor in interaction between rail and bridge. Therefore, must consider stiffness of bridge construction with non-linear characteristic of ballast and stiffness of base for accuracy with longitudinal force calculation and analyze. In this study, perform material non-linear analysis for longitudinal force of CWR and three dimensional buckling analysis to decide buckling force.

  • PDF

Improved Strain Influence Diagram and Settlement Estimation for Rectangular and Multiple Footings in Sand (수정변형률 영향계수에 근거한 직사각형 및 복합 얕은기초 침하량 산정법)

  • Park, Dong-Gyu;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.633-640
    • /
    • 2005
  • Most existing methods for the footing settlement estimation are for either isolated or strip footings. No sufficient details are available for settlement calculation of footings with different shapes and multiple footing conditions, which are commonly adopted in actual construction projects. In this paper, estimation of footing settlements for various footing conditions of different shapes and multiple conditions is investigated based on Schmertmann's method with focus on values of the strain influence factor $I_z$. In order to examine the effect of multiple footing conditions, field plate load tests are performed in sands using single and double plates. 3D non-linear finite element analyses are also performed for various footing conditions with different footing shape and distance ratios. Results obtained in this study indicate that there are two significant components in the strain influence diagram that need to be taken into account for settlement estimation of rectangular and multiple footings: depth of $I_{zp}$ and depth of strain influence zone. Based on results from experimental and 3D non-linear finite element analyses, improved strain influence diagrams available for various footing conditions are proposed.

  • PDF

Analysis of Corporate Value Relevance Form of Tax Avoidance (조세회피의 기업가치 관련성 형태 분석)

  • Gee-Jung Kwon
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.4
    • /
    • pp.233-254
    • /
    • 2023
  • Purpose - This study aims to verify whether the effect of tax avoidance on corporate value is non-linear in the Korean financial markets. Design/methodology/approach - This study believes that the cause of the inconsistent empirical analysis results of previous studies that verified the relationship between tax avoidance and firm value may be an error in assuming linearity, and verifies whether a nonlinear relationship exists. The sample company in this study is a December settlement corporation listed on the Korean stock market, and the analysis period is from 2000 to 2021. In the empirical analysis model, Tobin's Q is used as a proxy for corporate value, tax avoidance is used as the main independent variable, and a regression model is designed with corporate size, growth rate, and debt ratio set as control variables. Findings - As a result of the empirical analysis, it can be confirmed that there is an inverted U-shaped nonlinear relationship between tax avoidance and corporate value. In the additional analysis using Ohlson (1995) firm valuation model for the robustness of the results of the empirical analysis, the same nonlinear value relationship between tax avoidance can be confirmed. Research implications or Originality - This study is considered to be meaningful in that it verifies the non-linear relationship of tax avoidance, which has not been attempted in previous studies. The meaning of the inverted U-shaped nonlinear relationship presented in this study is that corporate tax avoidance acts as a factor that increases corporate value up to a certain level, but rather becomes a factor that decreases corporate value when it exceeds a critical point. These results are expected to provide new perspectives and perspectives on tax avoidance to companies belonging to the Korean capital market.

Acoustic Analysis of KSR-III Combustion Chamber with Various 5-Blade Baffles under Non-Reacting Condition (5-블레이드 배플이 설치된 로켓엔진 연소실에서의 상온음향 해석)

  • Kim, Hong-Jip;Kim, Seong-Ku;Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.167-171
    • /
    • 2003
  • Acoustic characteristics of baffled combustion chamber to elucidate suppressing effect of baffle on combustion instability are numerically investigated by linear acoustic analysis. A hub-blade baffle of 5 blades is selected as a candidate one and five variants of baffles with various configuration are designed. Resonant-frequency shift and damping factor are analyzed quantitatively as damping parameters. When the hub is located radially at the pressure node, the decrease of resonant frequency and increase of damping factor in 1R mode are dominant. But sub-1T mode is formed within hub, therefore, there would be a possibility of initiating 1T mode in unbaffled region, which would occur another problem. For smaller hub size, four kinds of axial baffle length is selected. As the axial baffle length increases, resonant frequency shift and increase of damping factor of transverse acoustic modes is obtained. Especially, two close acoustic modes such as 1L and 1T could be overlapped for a certain axial length, resulting in extreme increase of damping factor. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

  • PDF