• 제목/요약/키워드: Non Destructive Test

검색결과 474건 처리시간 0.029초

비접촉식 전자기 측정 시스템에서 자성물체의 형상판정에 관한 연구 (A Study on the Shape Evaluation using Non-contact Electromagnetic Measurement System)

  • 김재민;윤승호;원혁;박관수
    • 한국자기학회지
    • /
    • 제20권2호
    • /
    • pp.45-51
    • /
    • 2010
  • 비파괴검사는 탐지물체에 물리적 손상을 가하지 않고 내부 정보를 파악할 수 있어 다양한 분야에서 이용되고 있다. 그 중 전자기를 이용한 물체의 형상추정방법의 경우 역 유한요소법을 이용하여야 하지만 이는 비선형성이 강하고 수치계산이 복잡하고 측정 센서의 개수가 미지수의 개수보다 훨씬 적어 정확한 결과를 얻는데 어려움이 있다. 본 논문에서는 탐지물체에 의한 자기장 변화 신호만을 이용하여, 물체의 시스템 내 각 센서별 위치에서 물체와 등가면적의 원의 비교를 통해 비교적 간편하게 자성물체의 부피를 판정하고 형상추정을 위한 다양한 보정과정을 거쳐 탐지물체의 형상판정이 가능한 알고리즘을 제안하고 검증하였다.

타격력 응답신호를 이용한 암석의 비파괴 압축강도 산정방법에 관한 연구 (Study on Non-destructive Assessment of Compressive Strength of Rock Using Impact Force Response Signal)

  • 손무락;성진현
    • 한국지반환경공학회 논문집
    • /
    • 제23권10호
    • /
    • pp.13-19
    • /
    • 2022
  • 본 연구는 암석의 압축강도를 비파괴적으로 산정하기 위하여 암석시편 초기타격 및 반발에 의한 연속적인 반복타격 시 발생하는 타격력에 대한 응답신호를 모두 측정하고 이를 누적한 전체 타격력 신호에너지를 이용하고 그 결과를 제시하는 것에 관한 것이다. 본 연구에서는 이를 위해서 타격 및 측정장치를 고안 및 셋업하였고 이를 이용하여 암석시편을 회전 자유낙하에 의해 초기 타격토록하고 반발작용에 의한 반복타격이 이루어질 수 있도록 하였다. 본 연구에서는 서로 다른 세 종류의 암석시편에 대하여 타격력실험을 실시하고 발생신호를 측정하였다. 각 시편별 초기 및 반발타격으로부터 발생된 신호로부터 산정된 전체 타격력 신호에너지와 각 시편별 측정한 직접압축강도와 상호 비교하였다. 비교결과, 타격력 응답신호로 부터 산정된 전체 타격력 신호에너지는 시편의 직접압축강도와 직접적인 관계가 있다는 것을 확인하였으며, 이를 통해 암석의 압축강도는 타격 시 발생하는 타격력 응답신호로부터 산정된 전체 타격력 신호에너지를 이용하여 비파괴적으로 산정할 수 있음을 알 수 있었다.

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • 제6권3호
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

Estimation of Thickness of Concrete Structures using the Impact Echo Method and Ultrasonic Pulse Velocity Method

  • Hong, Seonguk;Lee, Yongtaeg;Kim, Seunghun;Lee, Changsik
    • Architectural research
    • /
    • 제18권4호
    • /
    • pp.179-184
    • /
    • 2016
  • The structure must be periodically checked and measures must be taken to prevent deterioration in building construction. From this point of view, a nondestructive test is essential to estimate whether the construction of buildings is proper, and whether the dimension of depositing concrete is consistent and without damage. This study estimated the thickness of the concrete component of construction framework using the ultrasonic velocity method and the impact echo method, in order to investigate reliability of the estimation of the thickness of normal strength concrete and high strength concrete, leading to the following conclusions. In the estimation of the thickness of the concrete structures, specimens of normal strength of 24MPa and specimens of high strength of 40MPa demonstrated an average error rate of 5.1% and 2.2%, respectively. The impact-echo method, one of the non-destructive tests, is verified as an efficient diagnostic technique. With this information, we will determine specific standards for the maintenance of structures, and the re-creation of lost building blueprints.

초음파를 이용한 추진제/라이너 미접착 및 추진제 미세 크랙의 결함 검출 기법 (Ultrasonic Inspection Technology of Defect Detection of Propellant/Liner Debond & Propellant Microcrack)

  • 나성엽
    • 한국추진공학회지
    • /
    • 제11권1호
    • /
    • pp.34-42
    • /
    • 2007
  • 초음파를 이용한 추진기관의 비파괴검사는 X-ray 검사에 비하여 경제성이 우수하고, X-ray 검사 시 취약한 미접착, 손상 등의 결함 검출이 우수한 편이다. 그리고 전용 시설 없이 현장에서 실시간으로 검사가 가능하며 방사선 작업에 비하여 안전한 방법이다. 본 논문에서는 고체 추진제에 대한 초음파 특성을 분석하고, 추진제/라이너 미접착에 대한 내측과 외측 검사 방법 및 추진제 손상에 의한 미세 크랙 검출에 대하여 실험 및 분석하였다. 실험 결과, 추진제/라이너 미접착에 대한 내.외측 검사에 있어서 검출 가능성을 보였으며, 그리고 손상에 의한 추진제 미세 크랙도 초음파의 감쇠특성을 이용하여 검출 가능함을 보였다.

Composite Fracture Detection Capabilities of FBG Sensor and AE Sensor

  • Kim, Cheol-Hwan;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • 제27권4호
    • /
    • pp.152-157
    • /
    • 2014
  • Non-destructive testing methods of composite materials are very important for improving material reliability and safety. AE measurement is based on the detection of microscopic surface movements from stress waves in a material during the fracture process. The examination of AE is a useful tool for the sensitive detection and location of active damage in polymer and composite materials. FBG (Fiber Bragg Grating) sensors have attracted much interest owing to the important advantages of optical fiber sensing. Compared to conventional electronic sensors, fiber-optical sensors are known for their high resolution and high accuracy. Furthermore, they offer important advantages such as immunity to electromagnetic interference, and electrically passive operation. In this paper, the crack detection capability of AE (Acoustic Emission) measurement was compared with that of an FBG sensor under tensile testing and buckling test of composite materials. The AE signals of the PVDF sensor were measured and an AE signal analyzer, which had a low pass filter and a resonance filter, was designed and fabricated. Also, the wavelength variation of the FBG sensor was measured and its strain was calculated. Calculated strains were compared with those determined by finite element analysis.

자동차용 엔지니어링 플라스틱의 접합조건 (Joining Condition of Engineering Plastic for Car)

  • 이정현;이우람
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.96-102
    • /
    • 2012
  • The current establishment of car engineering plastic piping polyethylene (PE) tube used as bonding state or part of the health or safety of fusion is very important. A part of these fusion methods to determine the soundness of the short-term trials and long-term tests can be largely classified. Typical tests included short-term strength, tensile strength, impact strength, compressive strength, resiliency and compression. Polyethylene (PE) pipes installed in the domestic terms of overall penetration rate of 45% has been used. However, polyethylene (PE) pipes have reliability problems, and these occurs mostly in part by defective welding. Therefore, the test is necessary for safety. Non-destructive methods (ultrasonic testing) are difficult to be used. Therefore, Polyethylene (PE) pipe are used. Fusion of thses materilas is necessary in these field however, its technical, and basic research has not been studied well. In this research, short-term strength of welding parts, its tensile strength, hardness, fatigue, and microstructure have been analyzed to find the optimum process conditions to improve mechanical properties.

강 구조물 접합부의 건전성 감시를 위한 램 웨이브와 확률 신경망의 적용 (Application of Lamb Waves and Probabilistic Neural Networks for Health Monitoring of Joint Steel Structures)

  • 박승희;이종재;윤정방;노용래
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.53-62
    • /
    • 2005
  • This study presents the NDE (non-destructive evaluation) technique for detecting the loosened bolts on joint steel structures on the basis of TOF (time of flight) and amplitudes of Lamb waves. Probabilistic neural network (PNN) technique which is an effective tool for pattern classification problem was applied to the damage estimation using PZT induced Lamb waves. Two kinds of damages were introduced by dominant damages (DD) which mean loosened bolts within the Lamb waves beam width and minor damages (MD) which mean loosened bolts out of the Lamb waves beam width. They were investigated for the establishment of the optimal decision boundaries which divide each damage class's region including the intact class. In this study, the applicability of the probabilistic neural networks was identified through the test results for the damage cases within and out of wave beam path. It has been found that the present methods are very efficient and reasonable in predicting the loosened bolts on the joint steel structures probabilistically.

환경 대기 중 ppt 수준의 황화수소 분석을 위한 GC 방식의 검량 기법에 대한 연구 (Calibration Methods for the Gas Chromatographic Analysis of ppt-level Hydrogen Sulfide (H2) in Air)

  • 김기현;오상인;최여진;최규훈;주도원
    • 한국대기환경학회지
    • /
    • 제19권6호
    • /
    • pp.679-687
    • /
    • 2003
  • In this study, we investigated the analytical techniques to quantify the ambient concentration of hydrogen sulfide (H$_2$S) in air at ppt concentration level. For this purpose, an on-line GC analytical system equipped with both pulsed-flame photometric detector (PFPD) and thermal desorption unit (TDU) was investigated by collecting ambient air samples. The results of our study generally indicated that calibration conditions of GC system is highly sensitive to affect the accuracy of the analytical technique. Most importantly. we found that the use of different matrices in the the preparation stage of working standards was sensitive to control the overall performance of this technique. The calibration of our analytical system was tested by the two types of working standard (prepared by mixing either with high purity $N_2$ or with the ambient air). According to this test, the latter represented more efficiently the detecting conditions of actual air samples. The peak occurrence patterns of both air samples and standards (prepared by mixing with ambient air) were altered in a similar manner as the function of the loaded volume; however, it was not the case for the $N_2$-mixed standards. Results of our study suggest that detection of H$_2$S is highly different from other sulfides and that its quantification requires minimiaing interfering effects of non -pure substance (like water vapor) and (either sorptive or destructive) loss effects.

초음파의 형상인식법을 이용한 저널베어링의 마멸파손 검지 (The Early Detection of Journal Bearing Failures by a Pattern Recognition of Ultrasonic Wave)

  • 윤의성;손동구;안효석
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2061-2068
    • /
    • 1993
  • Condition monitoring technology is of great importance for the maintenance of complex machinery in view of its early monitoring of the abnormal condition and the protection against failure. Several methods have been used for the detection of failure of journal bearings, one of the main elements of mechanical system. The methods most frequently used are vibration and temperature monitoring, but these are unable to monitor the wear conditions exactly. In this study, an ultrasonic measument method, one of the non-destructive testing methods, was introduced as the monitoring technology. Furtermore a pattem recognition method was applied to analyze the ultrasonic signal. The monitoring system using the pattern recognition method is composed of digital signal processing units and uses Hamming net algorithm for the recognition of ultrasonic waves. From the journal bearing wear test, the occurrence of adhesive wear of the white metal in rubbing contact with the shaft was exactly detected by this system, and the wear status of the journal bearing was monitored by measuring the wear thickness.