• Title/Summary/Keyword: Non - nulling method

Search Result 22, Processing Time 0.024 seconds

Development of five-hole probe nulling method reliable in complex flow field (복잡한 유동장에서도 신뢰성 있는 5공프로브 널링기법의 개발)

  • Kim, Jin-Gwon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1449-1457
    • /
    • 1997
  • Since a non-nulling method of five-hole probes is valid only when the flow angle is within the calibrated angle range, it can not be used in a complex flow field. Full angle range pressure coefficient maps show that widely used nulling methods do not guarantee correct alignment of the probe with the flow direction in the unknown complex flow field. Zone decision method and features of zone map were studied by investigating the full angle range pressure coefficient maps. A reliable and efficient new nulling algorithm using zone decision by pressure ordering is proposed and verified. Since the zone decision method by pressure ordering can decide whether the flow is within the calibration angle range or not, it is useful in wide angle nonnulling methods, too.

The Effect of Reynolds Number on the Calibration of a Five-Hole Probe at Low Reynolds Numbers (저 Reynolds 수 영역에서 Reynolds 수가 5공 프로우브의 보정에 미치는 영향)

  • Lee, Sang Woo;Jun, Sang Dae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.193-199
    • /
    • 2000
  • The effects of Reynolds number on the non-nulling calibration of a cone-type five-hole probe in low-speed flows have been investigated at the Reynolds numbers of $2.04{\times}10^3,\;4.09{\times}10^3$, and $6.13{\times}10^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. The result shows that each calibration coefficient, in general, is a function of the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting for the full non-nulling calibration characteristics. Due to the interference of the probe stem, the calibration coefficients have more Reynolds number sensitivity at positive pitch angles than at negative ones.

  • PDF

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Investigation of the Swirling Flow Fields of a Gun-Type Gas Burner by the Measurement of a Five-Hole Pressure Probe (5공 압력프로브의 측정에 의한 Gun식 가스버너의 스월유동장 고찰)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-23
    • /
    • 2015
  • The swirling flow fields of a gun-type gas burner(GTGB) without a combustion chamber were measured by a straight-type five-hole pressure probe(FHPP) under the cold flow condition. The three kinds of velocity components and the static pressure were calculated by using a non-nulling calibration method covering the velocity reduction performance of the effective flow attack angle of ${\pm}80^{\circ}$. As a result, the velocity and static pressure measured by a FHPP comparatively shows the better performance on the swirling flow of a GTGB than those measured by X-probe.

인버터의 전류측정 오차에 기인하는 영구자석형 동기전동기의 토크리플 저감

  • 홍순찬;윤덕용;원의연
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.26-30
    • /
    • 1996
  • This paper proposes a novel method to reduce the torque ripple due to the non-ideality of the current sensing parts in vector-controlled inverter-fed PMSM(Permanent Magnet Synchronous Motor) drive systems. The motor output torque equations are derived in terms of their offset voltages and different voltage transducing gains. And the effects of phase current errors on motor torque are analyzed for both salient PMSM and non-salient PMSM. The proposed method can eliminate the torque ripple by nulling the offset voltages and setting the voltage transducing gains to the same value. To verify the proposed method, digital simulations are carried out for non-salient PMSM.

  • PDF

Magnetic Field Inversion and Intra-Inversion Filtering using Edge-Adaptive, Gapped Gradient-Nulling Filters: Applications to Surveys for Unexploded Ordnance (UXO)

  • Rene, R.M.;Kim, K.Y.;Park, C.H.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.9-14
    • /
    • 2006
  • Estimations of depth, magnetic orientation, and strength of dipole moments aid discrimination between unexploded ordnance (UXO) and non-UXO using magnetic surveys. Such estimations may be hindered by geologic noise, magnetic clutter, and overlapping tails of nearby dipole fields. An improved method of inversion for anomalies of single or multiple dipoles with arbitrary polarization was developed to include intra-inversion filtering and estimation of background field gradients. Data interpolated to grids are flagged so that only nodes nearest to measurement stations are used. To apply intra-inversion filtering to such data requires a gapped filter. Moreover, for data with significant gaps in coverage, or along the edges or corners of survey areas, intra-inversion filters must be appropriately modified. To that end, edge-adaptive and gapped gradient-nulling filters have been designed and tested. Applications are shown for magnetic field data from Chongcho Lake, Sokcho, Korea and the U. S. Army's Aberdeen Proving Ground in Maryland.

  • PDF

Measurements of Five-Hole Pressure Probe on Swirling Flow Fields of Gun-Type Gas Burner for Furnace (온풍난방기용 Gun식 가스버너의 스월유동장에 대한 5공압력프로브의 측정)

  • Kim, Jang Kweon;Oh, Seok Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.991-997
    • /
    • 2014
  • This study investigated the swirling flow fields of a gun-type gas burner (GTGB) without a combustion chamber under cold flow conditions. Three velocity components and the static pressure were measured with a straight-type five-hole pressure probe (GHPP) using a non-nulling calibration method and compared with the results of an X-type hot-wire probe (X-probe) and computational fluid dynamics (CFD). The GHPP measured the velocity and static pressure for the swirling flow of the central region of the GTGB better than the X-probe but produced slightly worse results than the CFD.

Full angle range pressure coefficient maps of five-hole probe and new calibration coefficients (5공프로브의 전 각도 범위 압력계수 지도와 새로운 보정계수)

  • Kim, Jin-Gwon;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1437-1448
    • /
    • 1997
  • Pressures of a five-hole probe were measured for a full range of yaw and pitch angles and complete pressure coefficient maps were obtained. Based on these maps, various features of five-hole probe pressures were revealed and new five-hole probe calibration coefficients were devised. The new calibration coefficients show non-diverging characteristics for any flow direction and one-to-one correspondence for a wide range of flow angles. These calibration coefficients expand the valid flow angle range of five-hole probe calibration by .+-.10 degrees and complement a critical defect of five-hole probe zone-division calibration method which has not been known yet. Moreover new non-diverging calibration coefficients have advantages in nulling methods, too.