• Title/Summary/Keyword: Nominal Frequency

Search Result 166, Processing Time 0.034 seconds

A STABILITY STUDY FOR INDUSTRIAL PLANTS AND COMMERCIAL FACILITIES (산업용 플랜트 및 상업용 시설물 전력계통의 안정도에 대한 연구)

  • Kim, Ki-Taek;Yoon, Duck-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.19-21
    • /
    • 2005
  • The purpose of power system design is, in a word, to provide a good quality of electric power. The design of reliable industrial and commercial power distribution system is important because of the high costs associated with power outage. Three major factors for realization of the purpose are: (1) To hold system frequency at or very close to a specified nominal value(e.g. 60Hz) by control of frequency-effective power. (2) To maintain the correct value of interchange power between power and local generators. (3) To hold system voltage at or very close to a specified nominal value by control of voltage-reactive power. Within the past decade, numbers of industrial and commercial facilities installed with local generation, large motors or both, are increasing. This means that system stability is of concern to a growing number of industrial plant electrical engineers and consultants.

  • PDF

The Design of UFR with Fast Frequency Measurement Technique (고속의 주파수 계측 알고리즘을 갖는 저주파 계전기 설계)

  • Park, Jong-Chan;Kim, Byung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • In this paper, the frequency estimator and DFT filter gain compensation for UFR(Under Frequency protection Relay) is introduced. Due to the sudden appearance of generator loads or faults in power system, the frequency is supposed to deviate from its nominal value. Because a frequency calculation is based on phase information, it needs sufficient sampling data to figure out a precious frequency. Therefore the frequency measurement for UFR needs excellent qualities such as high speed and precision with low sampling frequency Authors propose the frequency estimator which compares the vector differences and the DFT filter gain compensation which identifies DFT filter error and correct it. Using the frequency estimator and compensation, UFR which has the 0.01[ms] calculation delay and 0.003[Hz] measurement error is implemented with digital processor.

A Comparative Study of Frequency Estimation Techniques using High Speed FIR Filter and Phasor Angle between Two Phasors (고속 FIR 필터와 두 페이저 위상을 이용한 주파수 추정 알고리즘의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.122-129
    • /
    • 2009
  • Frequency is an important operating parameter of a power system. It is essential that the frequency of a power system be maintained very close to its nominal frequency. And frequency measurement devices have need to measure a fast and accurate of frequency using voltage signals. This paper proposes a comparative study of frequency estimation techniques using the high speed FIR filter based algorithm, the DFT filter based algorithm using phasor angle between two phasors, and positive sequence component based algorithm using the half angle between two successive positions of phasor. The discussed three techniques have been formed through numerical manipulation of a discrete system. The proposed techniques have been tested using signals obtained from selected power system model using ATP simulation package. Some test results are shown in this paper.

On Power System Frequency Control in Emergency Conditions

  • Bevrani, H.;Ledwich, G.;Ford, J. J.;Dong, Z.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.499-508
    • /
    • 2008
  • Frequency regulation in off-normal conditions has been an important problem in electric power system design/operation and is becoming much more significant today due to the increasing size, changing structure and complexity of interconnected power systems. Increasing economic pressures for power system efficiency and reliability have led to a requirement for maintaining power system frequency closer to nominal value. This paper presents a decentralized frequency control framework using a modified low-order frequency response model containing a proportional-integral(PI) controller. The proposed framework is suitable for near-normal and emergency operating conditions. An $H_{\infty}$ control technique is applied to achieve optimal PI parameters, and an analytic approach is used to analyse the system frequency response for wide area operating conditions. Time-domain simulations with a multi-area power system example show that the simulated results agree with those predicted analytically.

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

A Study on the Improvement of Test and Diagnosis Device for Audio Frequency Track Circuit (가청주파수 궤도회로의 진단 및 시험 장비 개선에 대한 연구)

  • Kang, Jang-Kyu;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.147-155
    • /
    • 2010
  • We studied on performance improvement of TTM(TI21 Test Meter) that is test and diagnosis devices for jointless audio frequency track circuit on Korean electric railway TI21 standard. Upgraded devices is AD-TTM(Advanced TI21 Test Meter). This can measure alternating frequency USB(Upper signal band) and LSB(Lower signal band). In the audio frequency track circuit, ${\pm}17[Hz]$ of nominal frequency are demodulated and supplied to track relay through AND gate. It is important that measurement function which is error between USB and LSB. Need of AD-TTM will stand out in the electric railway system because this is simple and accurate rather than the former device.

The Study of Fast Frequency Measurement Technique for Protection Relay (계전기를 위한 고속의 주교수 계측 알고리즘)

  • Kim, Beung-Jin;Lee, Chang-Ho;Park, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.211-213
    • /
    • 2005
  • In this paper, the frequency compensator for digital protective relay is introduced. Due to sudden appearance of generation-load or fault in power system, the frequency can deviate from its nominal value. The Orthogonal filter adopted to digital protective relay is exposed to the problem. Therefore, the frequency variation makes a difficult to protective function and power measurement in digital protective relay. The essential property of the proposed algorithm presented is its outstanding immunity to both signal orthogonal component magnitudes and DFT filter gain variations which ensures below 0.05Hz accuracy of estimation. Additionally, the proposed method has excellent characteristics with low signal sampling rate. Based on the frequency estimation, author design under frequency protection relay for generator and verifies its performance with several experimental tests.

  • PDF

An algorithm for Power Frequency Estimation Using the Difference between the Gains of Cosine and Sine Filters (코사인 필터와 사인 필터의 이득차를 이용한 주파수 측정)

  • Nam, Soon-Ryul;Kang, Sang-Hee;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.249-254
    • /
    • 2006
  • A new algorithm for estimating power frequency is presented. Unlike conventional algorithms, the proposed algorithm is based on the fact that the magnitude gains of cosine and sine filters become different when the power frequency is deviated from the nominal value. This makes the algorithm capable of providing an accurate and fast estimate of the power frequency. To demonstrate the performance of the developed algorithm, various computer simulated data records are processed. The algorithm showed a high level of robustness as well as high measurement accuracy over a wide range of frequency changes. Moreover, the algorithm was highly immune to harmonics and noise.

Adaptive State Feedback Control System of DC Motors with Periodic Random Disturbance (주기적 확률외란을 갖는 DC 전동기의 적응형 상태궤환 제어시스템)

  • Jeong, Sang-Chul;Kim, Jun-Su;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1036-1041
    • /
    • 2008
  • Periodic disturbance is practically occurred in several engineering applications, especially in data storage systems. However, recently addressed controls for such problem were mostly dealt with its deterministic nature, which is rarely practical in real-time implementation. We present an adaptive control approach for DC motor systems with periodic stochastic disturbance whose frequency and magnitude are both random variables. We establish adaptive state feedback control which is linearly composed of nominal and corrective control parameter matrices. The former is derived from a nominal system model voiding disturbance and the latter is constructed from a disturbed system model by using Lyapunov stability theory. We carry out computer simulation to evaluate the proposed control methodology and compare to the recently addressed control method to demonstrate its superiority.

A Modular Disturbance Observer-based Cascade Controller for Robust Speed Regulation of PMSM

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1663-1674
    • /
    • 2017
  • This paper deals with the robust speed regulation of a surface-mounted permanent magnet synchronous motor (SPMSM) that is subject to parametric uncertainties and external disturbances. The proposed approach retains a conventional cascade control configuration composed of an outer-loop speed control module and inner-loop current control modules. Baseline proportional-integral (PI) controllers are designed for nominal modular systems without accounting for the uncertainties to set a desired control performance of the closed-loop system. After studied in both frequency and time domains, a reduced-order proportional-integral observer (PIO), as a modular disturbance observer, is incorporated with each control module to maintain the ideal performance of the modules. Theoretical analysis confirms the desired performance recovery of the augmented system with modular PIOs to the nominal system. Comparative computer simulations and experimental results validate the proposed cascade control method for SPMSM speed regulation.