• Title/Summary/Keyword: Noise robust speech recognition

Search Result 134, Processing Time 0.021 seconds

Robust Speaker Identification Using Linear Transformation Optimized for Diagonal Covariance GMM (대각공분산 GMM에 최적인 선형변환을 이용한 강인한 화자식별)

  • Kim, Min-Seok;Yang, Il-Ho;Yu, Ha-Jin
    • MALSORI
    • /
    • no.65
    • /
    • pp.67-80
    • /
    • 2008
  • We have been building a text-independent speaker recognition system that is robust to unknown channel and noise environments. In this paper, we propose a linear transformation to obtain robust features. The transformation is optimized to maximize the distances between the Gaussian mixtures. We use rotation of the axes, to cope with the problem of scaling the transformation matrix. The proposed transformation is similar to PCA or LDA, but can achieve better result in some special cases where PCA and LDA can not work properly. We use YOHO database to evaluate the proposed method and compare the result with PCA and LDA. The results show that the proposed method outperforms all the baseline, PCA and LDA.

  • PDF

Noise-Robust Speaker Recognition Using Subband Likelihoods and Reliable-Feature Selection

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.89-100
    • /
    • 2008
  • We consider the feature recombination technique in a multiband approach to speaker identification and verification. To overcome the ineffectiveness of conventional feature recombination in broadband noisy environments, we propose a new subband feature recombination which uses subband likelihoods and a subband reliable-feature selection technique with an adaptive noise model. In the decision step of speaker recognition, a few very low unreliable feature likelihood scores can cause a speaker recognition system to make an incorrect decision. To overcome this problem, reliable-feature selection adjusts the likelihood scores of an unreliable feature by comparison with those of an adaptive noise model, which is estimated by the maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. To evaluate the effectiveness of the proposed methods in noisy environments, we use the TIMIT database and the NTIMIT database, which is the corresponding telephone version of TIMIT database. The proposed subband feature recombination with subband reliable-feature selection achieves better performance than the conventional feature recombination system with reliable-feature selection.

  • PDF

Isolated Digit and Command Recognition in Car Environment (자동차 환경에서의 단독 숫자음 및 명령어 인식)

  • 양태영;신원호;김지성;안동순;이충용;윤대희;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.11-17
    • /
    • 1999
  • This paper proposes an observation probability smoothing technique for the robustness of a discrete hidden Markov(DHMM) model based speech recognizer. Also, an appropriate noise robust processing in car environment is suggested from experimental results. The noisy speech is often mislabeled during the vector quantization process. To reduce the effects of such mislabelings, the proposed technique increases the observation probability of similar codewords. For the noise robust processing in car environment, the liftering on the distance measure of feature vectors, the high pass filtering, and the spectral subtraction methods are examined. Recognition experiments on the 14-isolated words consists of the Korean digits and command words were performed. The database was recorded in a stopping car and a running car environments. The recognition rates of the baseline recognizer were 97.4% in a stopping situation and 59.1% in a running situation. Using the proposed observation probability smoothing technique, the liftering, the high pass filtering, and the spectral subtraction the recognition rates were enhanced to 98.3% in a stopping situation and to 88.6% in a running situation.

  • PDF

A Study of Noise Robust Content-Based Music Retrieval System (잡음에 강인한 내용기반 음악 검색 시스템에 대한 연구)

  • Yoon, Won-Jung;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.148-155
    • /
    • 2008
  • In this paper, we constructed the noise robust content-based music retrieval system in mobile environment. The performance of the proposed system was verified with ZCPA feature which is blown to have noise robust characteristic in speech recognition application. In addition, new indexing and fast retrieval method are proposed to improve retrieval speed about 99% compare to exhaustive retrieval for large music DB. From the computer simulation results in noise environment of 15dB - 0dB SNR, we confirm the superior performance of the proposed system about 5% - 30% compared to MFCC and FBE(filter bank energy) feature.

Speech Feature Extraction Using Auditory Model (청각모델을 이용한 음성신호의 특징 추출 방법에 관한 연구)

  • Park, Kyu-Hong;Kim, Young-Ho;Jung, Sang-Kuk;Rho, Seung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2259-2261
    • /
    • 1998
  • Auditory Models that are capable of achieving human performance would provide a basis for realizing effective speech processing systems. Perceptual invariance to adverse signal conditions (noise, microphone and channel distortions, room reverberations) may provide a basis for robust speech recognition and speech coder with high efficiency. Auditory model that simulates the part of auditory periphery up through the auditory nerve level and new distance measure that is defined as angle between vectors are described.

  • PDF

Cepstral Distance and Log-Energy Based Silence Feature Normalization for Robust Speech Recognition (강인한 음성인식을 위한 켑스트럼 거리와 로그 에너지 기반 묵음 특징 정규화)

  • Shen, Guang-Hu;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.278-285
    • /
    • 2010
  • The difference between training and test environments is one of the major performance degradation factors in noisy speech recognition and many silence feature normalization methods were proposed to solve this inconsistency. Conventional silence feature normalization method represents higher classification performance in higher SNR, but it has a problem of performance degradation in low SNR due to the low accuracy of speech/silence classification. On the other hand, cepstral distance represents well the characteristic distribution of speech/silence (or noise) in low SNR. In this paper, we propose a Cepstral distance and Log-energy based Silence Feature Normalization (CLSFN) method which uses both log-energy and cepstral euclidean distance to classify speech/silence for better performance. Because the proposed method reflects both the merit of log energy being less affected with noise in high SNR and the merit of cepstral distance having high discrimination accuracy for speech/silence classification in low SNR, the classification accuracy will be considered to be improved. The experimental results showed that our proposed CLSFN presented the improved recognition performances comparing with the conventional SFN-I/II and CSFN methods in all kinds of noisy environments.

Speech Recognition Using Noise Robust Features and Spectral Subtraction (잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식)

  • Shin, Won-Ho;Yang, Tae-Young;Kim, Weon-Goo;Youn, Dae-Hee;Seo, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • This paper compares the recognition performances of feature vectors known to be robust to the environmental noise. And, the speech subtraction technique is combined with the noise robust feature to get more performance enhancement. The experiments using SMC(Short time Modified Coherence) analysis, root cepstral analysis, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) processing are carried out. An isolated word recognition system is composed using semi-continuous HMM. Noisy environment experiments usign two types of noises:exhibition hall, computer room are carried out at 0, 10, 20dB SNRs. The experimental result shows that SMC and root based mel cepstrum(root_mel cepstrum) show 9.86% and 12.68% recognition enhancement at 10dB in compare to the LPCC(Linear Prediction Cepstral Coefficient). And when combined with spectral subtraction, mel cepstrum and root_mel cepstrum show 16.7% and 8.4% enhanced recognition rate of 94.91% and 94.28% at 10dB.

  • PDF

Reconstruction Effect of the Spectral Entropy for the Voice Activity Detection (음성 활동 구간 검출을 위한 스펙트랄 엔트로피의 재구성 효과)

  • Kwon HO-Min;Han Hag-Yong;Lee Kwang-Seok;Koh Si-Young;Hur Kang-In
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.25-28
    • /
    • 2002
  • Voice activity detection is important Problem in the speech recognition and communication. This paper introduces feature parameter which is reconstructed by the spectral entropy of information theory for the robust voice activity detection in the noise environment, analyzes and compares it with the energy method of voice activity detection and performance. In experiment, we confirmed that the spectral entropy is more feature parameter than the energy method for the robust voice activity detection in the various noise environment.

  • PDF

A Phase-related Feature Extraction Method for Robust Speaker Verification (열악한 환경에 강인한 화자인증을 위한 위상 기반 특징 추출 기법)

  • Kwon, Chul-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.613-620
    • /
    • 2010
  • Additive noise and channel distortion strongly degrade the performance of speaker verification systems, as it introduces distortion of the features of speech. This distortion causes a mismatch between the training and recognition conditions such that acoustic models trained with clean speech do not model noisy and channel distorted speech accurately. This paper presents a phase-related feature extraction method in order to improve the robustness of the speaker verification systems. The instantaneous frequency is computed from the phase of speech signals and features from the histogram of the instantaneous frequency are obtained. Experimental results show that the proposed technique offers significant improvements over the standard techniques in both clean and adverse testing environments.

Performance Improvement of Speech Recognizer in Noisy Environments Based on Auditory Modeling (청각 구조를 이용한 잡음 음성의 인식 성능 향상)

  • Jung, Ho-Young;Kim, Do-Yeong;Un, Chong-Kwan;Lee, Soo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.51-57
    • /
    • 1995
  • In this paper, we study a noise-robust feature extraction method of speech signal based on auditory modeling. The auditory model consists of a basilar membrane, a hair cell model and spectrum output stage. Basilar membrane model describes a response characteristic of membrane according to vibration in speech wave, and is represented as a band-pass filter bank. Hair cell model describes a neural transduction according to displacements of the basilar membrane. It responds adaptively to relative values of input and plays an important role for noise-robustness. Spectrum output stage constructs a mean rate spectrum using the average firing rate of each channel. And we extract feature vectors using a mean rate spectrum. Simulation results show that when auditory-based feature extraction is used, the speech recognition performance in noisy environments is improved compared to other feature extraction methods.

  • PDF