한국음향학회지 (The Journal of the Acoustical Society of Korea)
- 제15권5호
- /
- Pages.38-43
- /
- 1996
- /
- 1225-4428(pISSN)
- /
- 2287-3775(eISSN)
잡음에 강한 특징 벡터 및 스펙트럼 차감법을 이용한 음성 인식
Speech Recognition Using Noise Robust Features and Spectral Subtraction
- Shin, Won-Ho (Dept. of Electronics Eng., Yonsei Univ.) ;
- Yang, Tae-Young (Dept. of Electronics Eng., Yonsei Univ.) ;
- Kim, Weon-Goo (Dept. of Electrical Eng., Kunsan National Univ.) ;
- Youn, Dae-Hee (Dept. of Electronics Eng., Yonsei Univ.) ;
- Seo, Young-Joo (Electronics and Telecommunications Research Institute)
- 발행 : 1996.10.01
초록
본 논문에서는 잡음 및 주변 환경에 강인한 것으로 알려져 있는 특징 벡터들을 이용한 인식 성능을 비교하였다. 아울러 스펙트럼 차감법을 적용하여 높은 인식 성능을 얻도록 하였다. 본 논문에서는 환경 변화에 강인한 인식 성능을 얻기 위하여 SMC(Short time Modified Coherence) 분석, 루트(root) 켑스트럼 분석, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) 처리 등을 이용하여 인식 실험을 수행하였다. 실험을 위하여 반연속 HMM을 이용한 단독음 인식 시스템을 구현하였고 전시장 및 컴퓨터실의 잡음을 첨가하여 0, 10 및 20dB의 SNR에 대한 인식 실험을 수행하였다. 실험 결과, LPCC(Linear Prediction Cepstral Coefficient)를 이용한 경우에 비하여 SMC나 루트처리를 이용한 멜 켑스트럼(루트_멜 켑스트럼)을 이용한 경우 10dB의 SNR에서 각각 9.86%, 12.68% 향상된 가장 좋은 인식률을 얻었다. 또한 멜 켑스트럼과 루트_멜 켑스트럼을 스펙트럼 차감법과 결합하여 잡음을 제거한 경우 10dB에서 각각 16.7%, 8.4% 향상된 94.91%, 94.28%의 인식률을 얻을 수 있었다.
This paper compares the recognition performances of feature vectors known to be robust to the environmental noise. And, the speech subtraction technique is combined with the noise robust feature to get more performance enhancement. The experiments using SMC(Short time Modified Coherence) analysis, root cepstral analysis, LDA(Linear Discriminant Analysis), PLP(Perceptual Linear Prediction), RASTA(RelAtive SpecTrAl) processing are carried out. An isolated word recognition system is composed using semi-continuous HMM. Noisy environment experiments usign two types of noises:exhibition hall, computer room are carried out at 0, 10, 20dB SNRs. The experimental result shows that SMC and root based mel cepstrum(root_mel cepstrum) show 9.86% and 12.68% recognition enhancement at 10dB in compare to the LPCC(Linear Prediction Cepstral Coefficient). And when combined with spectral subtraction, mel cepstrum and root_mel cepstrum show 16.7% and 8.4% enhanced recognition rate of 94.91% and 94.28% at 10dB.
키워드