• Title/Summary/Keyword: Noise Subspace

Search Result 81, Processing Time 0.025 seconds

Operational modal analysis of structures by stochastic subspace identification with a delay index

  • Li, Dan;Ren, Wei-Xin;Hu, Yi-Ding;Yang, Dong
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.187-207
    • /
    • 2016
  • Practical ambient excitations of engineering structures usually do not comply with the stationary-white-noise assumption in traditional operational modal analysis methods due to heavy traffic, wind guests, and other disturbances. In order to eliminate spurious modes induced by non-white noise inputs, the improved stochastic subspace identification based on a delay index is proposed in this paper for a representative kind of stationary non-white noise ambient excitations, which have nonzero autocorrelation values near the vertical axis. It relaxes the stationary-white-noise assumption of inputs by avoiding corresponding unqualified elements in the Hankel matrix. Details of the improved stochastic subspace identification algorithms and determination of the delay index are discussed. Numerical simulations on a four-story frame and laboratory vibration experiments on a simply supported beam have demonstrated the accuracy and reliability of the proposed method in eliminating spurious modes under non-white noise ambient excitations.

An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization (뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘)

  • Jung, Young-Jin;Kwon, Ki-Woon;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

Improved speech enhancement of multi-channel Wiener filter using adjustment of principal subspace vector (다채널 위너 필터의 주성분 부공간 벡터 보정을 통한 잡음 제거 성능 개선)

  • Kim, Gibak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.490-496
    • /
    • 2020
  • We present a method to improve the performance of the multi-channel Wiener filter in noisy environment. To build subspace-based multi-channel Wiener filter, in the case of single target source, the target speech component can be effectively estimated in the principal subspace of speech correlation matrix. The speech correlation matrix can be estimated by subtracting noise correlation matrix from signal correlation matrix based on the assumption that the cross-correlation between speech and interfering noise is negligible compared with speech correlation. However, this assumption is not valid in the presence of strong interfering noise and significant error can be induced in the principal subspace accordingly. In this paper, we propose to adjust the principal subspace vector using speech presence probability and the steering vector for the desired speech source. The multi-channel speech presence probability is derived in the principal subspace and applied to adjust the principal subspace vector. Simulation results show that the proposed method improves the performance of multi-channel Wiener filter in noisy environment.

Subspace Speech Enhancement Using Subband Whitening Filter (서브밴드 백색화 필터를 이용한 부공간 잡음 제거)

  • 김종욱;유창동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • A novel subspace speech enhancement using subband whitening filter is proposed. Previous subspace speech enhancement method either assumes additive white noise or uses whitening filter as a pre-processing for colored noise. The proposed method tries to minimize the signal distortion while reducing residual noise by processing the signal using subband whitening filter. By incorporating the notion of subband whitening filter, spectral resolution in Karhunen-Loeve(KL) domain is improved with the negligible additional computational load. The proposed method outperforms both the subspace method suggested by Ephraim and the spectral subtraction suggested by Boll in terms of segmental signal-to-noise ratio (SNRseg) and perceptual evaluation of speech quality (PESQ).

On Construction of Anti-jam and Multipath Mitigation GNSS receiver by Subspace Projection (Subspace Projection을 이용한 전파방해신호 제거와 다중경로 간섭신호 제거 GNSS 수신기 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.24-30
    • /
    • 2006
  • This paper considers interference suppression and multipath mitigation in Global Navigation Satellite Systems (GNSSs). We propose an anti-jam GNSS receiver which suppresses interference and multipath by subspace projection method. The resulting interference suppressed and multipath mitigated signal is then process by a beamformer, whose weight vector maximizes the signal-to-noise ratio of the output signal. The enhanced performance is shown by refined cross correlation and beam pattern.

Image quality enhancement using signal subspace method (신호 부공간 기법을 이용한 영상화질 향상)

  • Lee, Ki-Seung;Doh, Won;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.72-82
    • /
    • 1996
  • In this paper, newly developed algorithm for enhancing images corrupted by white gaussian noise is proposed. In the method proposed here, image is subdivided into a number of subblocks, and each block is separated into cimponents corresponding to signal and noise subspaces, respectively through the signal subspace method. A clean signal is then estimated form the signal subspace by the adaptive wiener filtering. The decomposition of noisy signal into noise and signal subspaces in is implemented by eigendecomposition of covariance matrix for noisy image, and by performing blockwise KLT (karhunen loeve transformation) using eigenvector. To reduce the perceptual noise level and distortion, wiener filtering is implementd by adaptively adjusting noise level according to activity characteristics of given block. Simulation results show the effectiveness of proposed method. In particular, edge bluring effects are reduced compared to the previous methods.

  • PDF

Accelerated Starting Vectors for Analysis of Natural Modes of Structures (구조물의 고유모드 해석을 위한 가속화된 초기벡터 구성기법)

  • 김병완;정형조;이인원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.784-787
    • /
    • 2004
  • Modified version of subspace iteration method using accelerated starting vectors is proposed to efficiently calculate free vibration modes of structures. Proposed method employs accelerated Lanczos starting vectors that can reduce the number of iterations in the subspace iteration method. Proposed method is more efficient than the conventional method when the number of required modes is relatively small. To verify the efficiency of proposed method, two numerical examples are presented.

  • PDF

MUSIC-Based Direction Finding through Simple Signal Subspace Estimation (간단한 신호 부공간 추정을 통한 MUSIC 기반의 효과적인 도래방향 탐지)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • The MUSIC (MUltiple SIgnal Classification) method estimates the directions of arrival (DOAs) of the signals impinging on a sensor array based on the fact that the noise subspace is orthogonal to the signal subspace. In the conventional MUSIC, an estimate of the basis for the noise subspace is obtained by eigendecomposing the sample matrix, which is computationally expensive. In this paper, we present a simple DOA estimation method which finds an estimate of the signal subspace basis directly from the columns of the sample matrix from which the noise power components are removed. DOA estimates are obtained by searching for minimum points of a cost function which is defined using the estimated signal subspace basis. The minimum points are efficiently found through the Brent method which employs parabolic interpolation. Simulation shows that the simple estimation method virtually has the same performance as the complex conventional method based on the eigendecomposition.

A Robust Reverberation Rejection System against the Underwater Environmental Variations (수중 환경 변화에 강인한 잔향 제거 시스템)

  • 김기만
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • An active sonar is used to the navigation system or military purposes. In the active sonar one of the problems is a reverberation. The reflected signals from surface, bottom, and volume are received at receiver. This reverberation is an interference in the active sonar, and for the enhanced performance must be rejected. In this paper I study the method to reject the reverberation. The proposed method use the orthogonal property between the signal subspace and noise subspace in the eigen subspace. In the proposed method the noise subspace is calculated. I have performed the computer simulations to prove the performance of the proposed method.

  • PDF

Cell ID Detection and SNR Estimation Algorithms Robust to Noise (잡음에 강인한 셀 아이디 검출 및 SNR 추정 알고리즘)

  • Lee, Chong-Hyun;Bae, Jin-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.139-145
    • /
    • 2010
  • In this paper, we propose robust cell ID detection algorithm and SNR estimation algorithm applicable to mobile base station, which can be operated independently. The proposed cell ID estimation uses signal subspace to estimate cell IDs used in cell. The proposed SNR estimation algorithm uses number of noise subspace vectors and the corresponding eigen-vectors. Through the computer simulations, we showed that performance of the proposed cell ID detection and SNR estimation algorithms are superior to existing correlation based algorithms. Also we showed that the proposed algorithm is suitable to fast moving channel in high background noise and strong interference signal.