• Title/Summary/Keyword: Noise Robust

Search Result 1,308, Processing Time 0.032 seconds

Digital watermarking algorithm for authentication and detection of manipulated positions in MPEG-2 bit-stream (MPEG-2비트열에서의 인증 및 조작위치 검출을 위한 디지털 워터마킹 기법)

  • 박재연;임재혁;원치선
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.378-387
    • /
    • 2003
  • Digital watermarking is the technique that embeds invisible signalsincluding owner identification information, specific code, or pattern into multimedia data such as image, video and audio. Watermarking techniques can be classified into two groups; robust watermarking and fragile(semi-fragile) watermarking. The main purpose of the robust watermarking is the protection of copyright, whereas fragile(semi-fragile) watermarking prevents image or video data from illegal modifications. To achieve this goal watermark should survive from unintentional modifications such as random noise or compression, but it should be fragile for malicious manipulations. In this paper, an invertible semi-fragile watermarkingalgorithm for authentication and detection of manipulated location in MPEG-2 bit-stream is proposed. The proposed algorithm embeds two kinds of watermarks, which are embedded into quantized DCT coefficients. So it can be applied directly to the compressed bit-stream. The first watermark is used for authentication of video data. The second one is used for detection of malicious manipulations. It can distinguish transcodingin bit-stream domain from malicious manipulation and detect the block-wise locations of manipulations in video data. Also, since the proposed algorithm has an invertible property, recovering original video data is possible if the watermarked video is authentic.

Hierarchical Watermarking Technique Combining Error Correction Codes (오류 정정 부호를 결합한 계층적 워터마킹 기법)

  • Do-Eun Kim;So-Hyun Park;Il-Gu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.481-491
    • /
    • 2024
  • Digital watermarking is a technique for embedding information into digital content. Digital watermarking has attracted attention as a technique to combat piracy and identify artificially generated content, but it is still not robust in various situations. In this paper, we propose a frequency conversion-based hierarchical watermarking technique capable of attack detection, error correction, and owner identification. By embedding attack detection and error correction signatures in hierarchical watermarking, the proposed scheme maintains invisibility and outperforms the existing methods in capacity and robustness. We also proposed a framework to evaluate the performance of the image quality and error correction according to the type of error correction signature and the number of signature embeddings. We compared the visual quality and error correction performance of the conventional model without error correction signature and the conventional model with hamming and BCH signatures. We compared the quality by the number of signature embeddings and found that the quality deteriorates as the number of embeddings increases but is robust to attacks. By analyzing the quality and error correction ability by error correction signature type, we found that hamming codes showed better error correction performance than BCH codes and 41.31% better signature restoration performance than conventional methods.

Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel (CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구)

  • Hong, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.895-904
    • /
    • 2007
  • This paper proposes a robust sub-optimal smart antenna in Code Division Multiple Access (CDMA) basestation. It makes use of the property of the Least Mean Square (LMS) algorithm and the Conjugate Gradient Method (CGM) algorithm for beamforming processes. The weight update takes place at symbol level which follows the PN correlators of receiver module under the assumption that the post correlation desired signal power is far larger than the power of each of the interfering signals. The proposed algorithm is simple and has as low computational load as five times of the number of antenna elements(O(5N)) as a whole per each snapshot. The output Signal to Interference plus Noise Ratio (SINR) of the proposed smart antenna system when the weight vector reaches the steady state has been examined. It has been observed in computer simulations that proposed beamforming algorithm improves the SINR significantly compared to the single antenna case. The convergence property of the weight vector has also been investigated to show that the proposed hybrid algorithm performs better than CGM and LMS during the initial stage of the weight update iteration. The Bit Error Rate (BER) characteristics of the proposed array has also been shown as the processor input Signal to Noise Ratio (SNR) varies.

A 0.4-2GHz, Seamless Frequency Tracking controlled Dual-loop digital PLL (0.4-2GHz, Seamless 주파수 트래킹 제어 이중 루프 디지털 PLL)

  • Son, Young-Sang;Lim, Ji-Hoon;Ha, Jong-Chan;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.65-72
    • /
    • 2008
  • This paper proposes a new dual-loop digital PLL(DPLL) using seamless frequency tracking methods. The dual-loop construction, which is composed of the coarse and fine loop for fast locking time and a switching noise suppression, is used successive approximation register technique and TDC. The proposed DPLL in order to compensate the quality of jitter which follows long-term of input frequency is newly added cord conversion frequency tracking method. Also, this DPLL has VCO circuitry consisting of digitally controlled V-I converter and current-control oscillator (CCO) for robust jitter characteristics and wide lock range. The chip is fabricated with Dongbu HiTek $0.18-{\mu}m$ CMOS technology. Its operation range has the wide operation range of 0.4-2GHz and the area of $0.18mm^2$. It shows the peak-to-peak period jitter of 2 psec under no power noise and the power dissipation of 18mW at 2GHz through HSPICE simulation.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

A Method of Integrating Scan Data for 3D Face Modeling (3차원 얼굴 모델링을 위한 스캔 데이터의 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.43-57
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, the existing integration methods are sensitive to registration errors and surface scanning noise. In this paper, we propose a integration algorithm using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition in the areas between neighboring surfaces, and then separates areas to several regions by using boundary vertex pairs. We next compute best fitting planes suitable to each regions through PCA(Principal Component Analysis). They are used to produce triangles that be inserted into empty areas between neighboring surfaces. Since each regions between neighboring surfaces can be integrated by using local surface topology, a proposed method is robust to registration errors and surface scanning noise. We also propose a method integrating of textures by using parameterization technique. We first transforms integrated surface into initial viewpoints of each surfaces. We then project each textures to transformed integrated surface. They will be then assigned into parameter domain for integrated surface and be integrated according to the seaming lines for surfaces. Experimental results show that the proposed method is efficient to face modeling.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Time-Scale Modification of Polyphonic Audio Signals Using Sinusoidal Modeling (정현파 모델링을 이용한 폴리포닉 오디오 신호의 시간축 변화)

  • 장호근;박주성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2001
  • This paper proposes a method of time-scale modification of polyphonic audio signals based on a sinusoidal model. The signals are modeled with sinusoidal component and noise component. A multiresolution filter bank is designed which splits the input signal into six octave-spaced subbands without aliasing and sinusoidal modeling is applied to each subband signal. To alleviate smearing of transients in time-scale modification a dynamic segmentation method is applied to subbands which determines the analysis-synthesis frame size adaptively to fit time-frequency characteristics of the subband signal. For extracting sinusoidal components and calculating their parameters matching pursuit algorithm is applied to each analysis frame of subband signal. In accordance with spectrum analysis a psychoacoustic model implementing the effect of frequency masking is incorporated with matching pursuit to provide a resonable stop condition of iteration and reduce the number of sinusoids. The noise component obtained by subtracting the synthesized signal with sinusoidal components from the original signal is modeled by line-segment model of short time spectrum envelope. For various polyphonic audio signals the result of simulation shows suggested sinusoidal modeling can synthesize original signal without loss of perceptual quality and do more robust and high quality time-scale modification for large scale factor because of representing transients without any perceptual loss.

  • PDF

Co-registration of PET-CT Brain Images using a Gaussian Weighted Distance Map (가우시안 가중치 거리지도를 이용한 PET-CT 뇌 영상정합)

  • Lee, Ho;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.612-624
    • /
    • 2005
  • In this paper, we propose a surface-based registration using a gaussian weighted distance map for PET-CT brain image fusion. Our method is composed of three main steps: the extraction of feature points, the generation of gaussian weighted distance map, and the measure of similarities based on weight. First, we segment head using the inverse region growing and remove noise segmented with head using region growing-based labeling in PET and CT images, respectively. And then, we extract the feature points of the head using sharpening filter. Second, a gaussian weighted distance map is generated from the feature points in CT images. Thus it leads feature points to robustly converge on the optimal location in a large geometrical displacement. Third, weight-based cross-correlation searches for the optimal location using a gaussian weighted distance map of CT images corresponding to the feature points extracted from PET images. In our experiment, we generate software phantom dataset for evaluating accuracy and robustness of our method, and use clinical dataset for computation time and visual inspection. The accuracy test is performed by evaluating root-mean-square-error using arbitrary transformed software phantom dataset. The robustness test is evaluated whether weight-based cross-correlation achieves maximum at optimal location in software phantom dataset with a large geometrical displacement and noise. Experimental results showed that our method gives more accuracy and robust convergence than the conventional surface-based registration.

A Study on the Improvement of Wavefront Sensing Accuracy for Shack-Hartmann Sensors (Shack-Hartmann 센서를 이용한 파면측정의 정확도 향상에 관한 연구)

  • Roh, Kyung-Wan;Uhm, Tae-Kyoung;Kim, Ji-Yeon;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2006
  • The SharkHartmann wavefront sensors are the most popular devices to measure wavefront in the field of adaptive optics. The Shack-Hartmann sensors measure the centroids of spot irradiance distribution formed by each corresponding micro-lens. The centroids are linearly proportional to the local mean slopes of the wavefront defined within the corresponding sub-aperture. The wavefront is then reconstructed from the evaluated local mean slopes. The uncertainty of the Shack-Hartmann sensor is caused by various factors including the detector noise, the limited size of the detector, the magnitude and profile of spot irradiance distribution, etc. This paper investigates the noise propagation in two major centroid evaluation algorithms through computer simulation; 1st order moments of the irradiance algorithms i.e. center of gravity algorithm, and correlation algorithm. First, the center of gravity algorithm is shown to have relatively large dependence on the magnitudes of noises and the shape & size of irradiance sidelobes, whose effects are also shown to be minimized by optimal thresholding. Second, the correlation algorithm is shown to be robust over those effects, while its measurement accuracy is vulnerable to the size variation of the reference spot. The investigation is finally confirmed by experimental measurements of defocus wavefront aberrations using a Shack-Hartmann sensor using those two algorithms.