목적: 다른 생체신호와 마찬가지로 망막전도(electroretinogram, ERG) 신호도 측정시 잡음이 발생한다. 이 잡음을 효과적으로 제거하여 망막관련 진단의 정확도를 높이고자 하였다. 방법: ERG 신호에 60 Hz 잡음과 백색잡음을 발생시켜 샘플링 신호를 만들었다. 웨이브렛 변환과 대역통과 필터를 이용하여 잡음를 제거하였다. 푸리에 변환 스펙트럼을 이용하여 제거된 주파수를 비교하였다. 신호대잡음비(signal to noise ratio, SNR)를 이용하여 제거된 잡음을 수치적으로 비교하였다. 결과: 푸리에 변환 스펙트럼을 비교한 결과 웨이브렛 변환에서는 60 Hz 잡음은 완전히 제거 되었으며 백색잡음도 많이 제거되었다. 대역통과필터에서는 60 Hz와 백색잡음 남아 있었다. 신호대잡음비를 비교한 결과에서는 웨이브렛 변환은 22.8638, 대역통과 필터는 4.0961로 나타났다. 결론: 웨이브렛 변환을 이용하여 잡음 제거시 신호의 왜곡을 적게 발생시켜 제거할 수 있었다. 망막전도 신호를 이용한 망막 진단에 정확도를 높일 수 있을 것으로 기대된다.
어떤 물체 영역의 골격(skeleton)을 얻기 위해 세건화(thinning)하는 과정에서 잔가지(parasitic branch)가 발생하므로, 이러한 것을 효과적으로 제거하기 위한 여러 가지 연구가 이루어져 왔다. 이중에서 잔가지가 한 픽셀 두께의 가지로 나타나는 속성에 착안하여, 윤곽선 추적에 의한 대칭 경로(symmetric path)를 검출함으로써 잔가지를 제거하는 방법이 매우 효과적인 것을 알 수 있었다. 본 연구에서는, 이 방법을 영상 분할이나 연결 요소 추출 등에 의해 구해진 물체 영역의 윤곽선 부분에 나타나는 잡영가지 (noise branch)를 제거하는데 활용할 수 있도록 개선한 방법을 제안한다. 즉, 한 픽셀 두께의 잡영가지 뿐만 아니라, 부분적으로 두 픽셀 이상이 뭉쳐져 둥그스름한 덩어리(잡영블랍, noise blob)를 형성하고 있는 잡영가지도 제거할 수 있는 개선된 방법을 제안한다. 대칭 경로를 찾기 위해 4-8방향 윤곽선 추적 알고리즘을 이용하며, 잡영블랍이 포함된 경우에는 준대칭(quasi-symmetric) 경로를 정의하여 추출한다. 제안한 방법의 시간 복잡도는 윤곽선 픽셀수의 선형 함수로 표현되며, 사용자가 잡영블랍과 잡영가지의 크기를 임의로 설정하도록 하여 융통성있고 다양하게 잡영가지를 제거할 수 있도록 하였다. 실제 형상과 인위적 형상에 대한 실험을 통해 제안된 방법의 유용성을 확인할 수 있었다.
본 논문에서는 카메라 자동 교정을 통한 3차원 재구성 과정에서 생기는 오차로 인해 포함되는 잡음을 특성에 따라 효과적으로 제거하여 정교한 3차원 데이터를 얻기 위한 방법을 제안한다. 기존의 잡음 평활화 과정은 잡음 때문에 면적이 큰 메쉬는 3차원으로 재구성하는데 문제점이 존재한다. 제안한 알고리즘은 메쉬의 면적이 중요하기 때문에 취득된 3차원 데이터는 불필요한 삼각형 메쉬들을 사전에 제거하는 전처리 과정이 필요하다. 본 연구는 3차원 메쉬의 면적 정보를 이용하여 잡음의 특성을 분석하고, 그 특성에 따라 피크 잡음과 가우스 잡음을 분리하여 효과적으로 잡음을 제거한다. 본 알고리즘의 성능은 재구성 데이터에 대한 정량적인 비교 분석을 통해 기존의 메쉬 평활화 방법보다 더 정교한 3차원 데이터를 얻음을 확인하였다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제15권2호
/
pp.102-110
/
2015
The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.
현재, 디지털 시대의 급속 발전과 함께 멀티미디어 서비스에 대한 수요가 증가되고 있다. 그러나 영상 데이터를 처리, 전송, 저장하는 과정에서 여러 외부 원인에 의해 영상의 열화가 발생되며, 영상 열화의 주된 원인은 잡음에 의한 것으로 알려져 있다. 잡음을 제거하는 대표적인 방법은 CWMF(center weighted median filter), A-TMF(alpha-trimmed mean filter), AWMF(adaptive weighted median filter) 등이 있으며, 이러한 방법들은 복합잡음 환경에서의 잡음제거 특성이 다소 미흡하다. 따라서 본 논문에서는 복합잡음을 제거하기 위하여 잡음 판단을 거친 후, 마스크의 메디안 값 및 거리에 의해 적응 가중치를 설정하여 처리하는 영상복원 필터 알고리즘을 제안하였다. 그리고 객관적 판단을 위해 기존의 방법들과 비교하였으며, 판단의 기준으로 PSNR(peak signal to noise ratio)을 사용하였다.
Journal of information and communication convergence engineering
/
제9권5호
/
pp.591-596
/
2011
Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.
다양한 장소에서 드론이 활발하게 이용되면서 비행금지구역 내 불법 침입, 정보 유출, 항공기 충돌 등의 위험이 증가하고 있다. 이러한 위험을 줄이기 위해 비행금지구역으로 침입하는 드론을 탐지할 수 있는 시스템 구축이 필요하다. 기존의 드론 음향 탐지 연구는 탐지 모델에 환경 소음에 노출된 드론 음향을 그대로 학습시켰기 때문에 환경 소음에 독립적인 성능을 얻지 못했다. 이에 본 논문에서는 다양한 공간에서 환경 소음에 노출된 드론 음향을 명확하게 탐지하기 위해 주변 환경 소음을 별도로 수집하고, 드론 음향 신호에서 환경 소음을 제거하여 시끄러운 환경 속에서도 견고한 성능을 나타내는 범용적인 드론 탐지 시스템을 제안한다. 제안하는 시스템은 수집한 드론 음향 신호에서 환경 소음을 제거한 후 Mel Spectrogram 특성추출과 CNN 딥러닝을 이용하여 드론 존재 여부를 예측하였다. 실험 결과, 환경 소음으로 인해 감소했던 드론 탐지 성능을 7% 이상 향상시킴을 확인하였다.
Structure-bone noise is an important aspect to consider during the design and development of a vehicle. Reduction of structure-bone noise of the compartment in a vehicle is an important task in automotive engineering. Many methods which analyze transfer path of noise have been used for structure-bone noise. The existing method to measure of frequency response function of transfer path has been tested by removing a source. This Paper presents an experimental analysis about Transfer Path Analysis of the vehicle interior noise according to Excitation or not. To identify these points of difference, experiment were conducted through an experimental test using simulation vehicle.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.