• 제목/요약/키워드: Noise Image

검색결과 3,324건 처리시간 0.023초

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

Digital Image Enhancement Algorithm

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제4권3호
    • /
    • pp.48-55
    • /
    • 2016
  • Conventional techniques for solving the noise problem have problems to generate different results, depending on the image size and weight values of the used masks, and they require many operations by using a complex formula. In this paper, we propose an image enhancement algorithm to solve the noise problem in a simple, yet easy-to-use way. For this purpose, we determined the difference between the noise of the two adjacent pixels for the horizontal and vertical, and for the two diagonal directions that each of the noise problem occurred, and then we got the average value of these pixel values. Then, we solve the noise problem by using the optimal average value in accordance with occurrence of the noise in the horizontal and vertical, and two adjacent pixels in a diagonal direction. As a result, we got the result that the noise solution in a simple, yet easy-to-use method to obtain a resultant image.

블럭 방법에 근거한 영상의 적응적 잡음제거 알고리즘 (Adaptive Noise Reduction Algorithm for Image Based on Block Approach)

  • 김영화
    • Communications for Statistical Applications and Methods
    • /
    • 제19권2호
    • /
    • pp.225-235
    • /
    • 2012
  • 다양한 이유로 인하여 발생하는 영상 잡음은 영상의 화질을 악화시키므로 발생한 잡음을 제거, 감소하는 것이 영상처리 분야에서 매우 중요한 문제이다. 이러한 문제를 해결하는데 가장 근본적인 어려움은 영상 정보에서 제거해야할 잡음과 보존해야 할 신호를 구별하는 것이 쉽지 않다는 것이다. 단순평활법과 같은 잡음 제거과정은 영상을 개선하는데 사용되는 기초적이고 중요한 방법이지만 영상을 오염시키는 잡음의 크기를 고려하지 않는 결점이 있다. 즉, 이러한 방법을 사용하면 잡음을 감소시키는 효과와 함께 잡음이 적거나 없는 부분까지도 열화되어 영상이 흐릿해지는 단점을 보이게 된다. 본 연구에서는 입력 영상에서 신호와 잡음을 효과적으로 구별하여 잡음의 상대적인 크기에 따라 적응적으로 잡음을 제거할 수 있는 방법을 블록 방법을 이용하여 제안한다. 모의실험 결과, 본 연구에서 제안하는 알고리즘에 의해 적응적으로 잡음을 제거함으로써 전체적인 영상의 질이 개선되는 것을 확인하였다.

Adaptive Noise Reduction Algorithm for an Image Based on a Bayesian Method

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제19권4호
    • /
    • pp.619-628
    • /
    • 2012
  • Noise reduction is an important issue in the field of image processing because image noise lowers the quality of the original pure image. The basic difficulty is that the noise and the signal are not easily distinguished. Simple smoothing is the most basic and important procedure to effectively remove the noise; however, the weakness is that the feature area is simultaneously blurred. In this research, we use ways to measure the degree of noise with respect to the degree of image features and propose a Bayesian noise reduction method based on MAP (maximum a posteriori). Simulation results show that the proposed adaptive noise reduction algorithm using Bayesian MAP provides good performance regardless of the level of noise variance.

Restoration of Images Contaminated by Mixed Gaussian and Impulse Noise using a Complex Method

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권3호
    • /
    • pp.336-340
    • /
    • 2011
  • Many approaches to image restoration are aimed at removing either gauss or impulse noise. This is because both types of degradation processes are distinct in nature, and hence they are easier to manage when considered separately. Nevertheless, it is possible to find them operating on the same image, which produces a hard damage. This happens when an image, already contaminated by Gaussian noise in the image acquisition procedure, undergoes impulsive corruption during its digital transmission. Here we proposed an algorithm first judge the type of the noise according to the difference values of pixel's neighborhood region and impulse noise's characteristic. Then removes the gauss noise by modified weighted mean filter and removes the impulse noise by modified nonlinear filter. The result of computer simulation on test images indicates that the proposed method is superior to traditional filtering algorithms. The proposed method can not only remove mixed noise effectively, but also preserve image details.

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.

A Study on Image Restoration Algorithm in Random-Valued Impulse Noise Environment

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제9권3호
    • /
    • pp.331-335
    • /
    • 2011
  • Digital images are often corrupted by impulse noise, and it is very important to remove random-valued impulse noise. Cleaning such noise is far more difficult than cleaning salt and pepper impulse noise. In this paper, we proposed an efficient way to remove random-valued impulse noise from digital images. This novel method comprises two stages. The first stage is to detect the random-valued impulse noise in the image and the pixels are roughly divided into two classes, which are "noise-free pixel" and "noise pixel". Then, the second stage is to eliminate the random-valued impulse noise from the image. In this stage, only the "noise pixels" are processed. The "noise-free pixels" are copied directly to the output image. Simulation results indicated that our method provides a significant improvement over many other existing algorithms.

Minimum Statistics-Based Noise Power Estimation for Parametric Image Restoration

  • Yoo, Yoonjong;Shin, Jeongho;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권2호
    • /
    • pp.41-51
    • /
    • 2014
  • This paper describes a method to estimate the noise power using the minimum statistics approach, which was originally proposed for audio processing. The proposed minimum statistics-based method separates a noisy image into multiple frequency bands using the three-level discrete wavelet transform. By assuming that the output of the high-pass filter contains both signal detail and noise, the proposed algorithm extracts the region of pure noise from the high frequency band using an appropriate threshold. The region of pure noise, which is free from the signal detail part and the DC component, is well suited for minimum statistics condition, where the noise power can be extracted easily. The proposed algorithm reduces the computational load significantly through the use of a simple processing architecture without iteration with an estimation accuracy greater than 90% for strong noise at 0 to 40dB SNR of the input image. Furthermore, the well restored image can be obtained using the estimated noise power information in parametric image restoration algorithms, such as the classical parametric Wiener or ForWaRD image restoration filters. The experimental results show that the proposed algorithm can estimate the noise power accurately, and is particularly suitable for fast, low-cost image restoration or enhancement applications.

An Efficient Quadtree Method Based on SDT for Noise Image

  • Cho Gang Seok;Chung Hoon;Chung Yong Duk;Jung Byung Yoon;oh Sung Shik;Kim Chung Hwa
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 학술대회지
    • /
    • pp.640-644
    • /
    • 2004
  • Since the existing quadtree image segmentation methods decide the presence of image information using the maximum and minimum pixel value within an image block, they are very sensitive to noise. Although many image segmentation methods have been researched up to date, they can not execute the optimum image segmentation if noise is included in an image because there is no accurate parameters which can distinguish noise. For that reason, all application using the existing quadtree segmentation has potential of decreasing in performance due to noise. This paper proposed a quadtree image segmentation based on SDT (Standard Deviation Threshold) that can effectively extract image information parameters from a noise image. This method has the advantage of distinguishing the presence of image information even if the image has noises caused by communication. Furthermore, this paper verified through test comparison that the proposed quadtree segmentation could estimate more accurate image information parameters than the existing ones even in noise-added environment.

  • PDF

Image Global K-SVD Variational Denoising Method Based on Wavelet Transform

  • Chang Wang;Wen Zhang
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.275-288
    • /
    • 2023
  • Many image edge details are easily lost in the image denoising process, and the smooth image regions are prone to produce jagged. In this paper, we propose a wavelet-based image global k- singular value decomposition variational method to remove image noise. A layer of wavelet decomposition is applied to the noisy image first. Then, the image global k-singular value decomposition (IGK-SVD) method is used to remove the random noise of low-frequency components. Furthermore, a constructed variational denoising method (VDM) removes the random noise in the high-frequency component. Finally, the denoised image is obtained by wavelet reconstruction. The experimental results show that the proposed method's peak signal-to-noise ratio (PSNR) value is higher than other methods, and its structural similarity (SSIM) value is closer to one, indicating that the proposed method can effectively suppress image noise while retaining more image edge details. The denoised image has better denoising effects.