• Title/Summary/Keyword: Noise Figure

Search Result 563, Processing Time 0.028 seconds

Improved Binarization and Removal of Noises for Effective Extraction of Characters in Color Images (컬러 영상에서 효율적 문자 추출을 위한 개선된 2치화 및 잡음 저거)

  • 이은주;정장호
    • Journal of Information Technology Application
    • /
    • v.3 no.2
    • /
    • pp.133-147
    • /
    • 2001
  • This paper proposed a new algorithm for binarization and removal of noises in color images with characters and pictures. Binarization was performed by threshold which had computed with color-relationship relative to the number of pixel in background and character candidates and pre-threshold for dividing of background and character candidates in input images. The pre-threshold has been computed by the histogram of R, G, B In respect of the images, while background and character candidates of input images are divided by the above pre-threshold. As it is possible that threshold can be dynamically decided by the quantity of the noises, and the character images are maintained and the noises are removed to the maximum. And, in this study, we made the noise pattern table as a result of analysis in noise pattern included in the various color images aiming at removal of the noises from the Images. Noises included in the images can figure out Distribution by way of the noise pattern table and pattern matching itself. And then this Distribution classified difficulty of noises included in the images into the three categories. As removal of noises in the images is processed through different procedure according to the its classified difficulties, time required for process was reduced and efficiency of noise removal was improved. As a result of recognition experiments in respect of extracted characters in color images by way of the proposed algorithm, we conformed that the proposed algorithm is useful in a sense that it obtained the recognition rate in general documents without colors and pictures to the same level.

  • PDF

Design of a Fully Integrated Low Power CMOS RF Tuner Chip for Band-III T-DMB/DAB Mobile TV Applications (Band-III T-DMB/DAB 모바일 TV용 저전력 CMOS RF 튜너 칩 설계)

  • Kim, Seong-Do;Oh, Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This paper describes a fully integrated CMOS low-IF mobile-TV RF tuner for Band-III T-DMB/DAB applications. All functional blocks such as low noise amplifier, mixers, variable gain amplifiers, channel filter, phase locked loop, voltage controlled oscillator and PLL loop filter are integrated. The gain of LNA can be controlled from -10 dB to +15 dB with 4-step resolutions. This provides a high signal-to-noise ratio and high linearity performance at a certain power level of RF input because LNA has a small gain variance. For further improving the linearity and noise performance we have proposed the RF VGA exploiting Schmoock's technique and the mixer with current bleeding, which injects directly the charges to the transconductance stage. The chip is fabricated in a 0.18 um mixed signal CMOS process. The measured gain range of the receiver is -25~+88 dB, the overall noise figure(NF) is 4.02~5.13 dB over the whole T-DMB band of 174~240 MHz, and the measured IIP3 is +2.3 dBm at low gain mode. The tuner rejects the image signal over maximum 63.4 dB. The power consumption is 54 mW at 1.8 V supply voltage. The chip area is $3.0{\times}2.5mm^2$.

Gain and Phase Mismatch Calibration Technique in Image-Reject RF Receiver

  • Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.1
    • /
    • pp.25-27
    • /
    • 2010
  • This paper presents a gain and phase mismatch calibration technique for an image-reject RF receiver. The gain mismatch is calibrated by directly measuring the output signal amplitudes of two signal paths. The phase mismatch is calibrated by measuring the output amplitude of the final IF output at the image band. The calibration of the gain and phase mismatch is performed at power-up, and the normal operation of the RF receiver does not interfere with the mismatch calibration circuit. To verify the proposed technique, a 2.4-GHz Weaver image-reject receiver with the gain and phase mismatch calibration circuit is implemented in a 0.18-${\mu}m$ CMOS technology. The overall receiver achieves a voltage gain of 45 dB and a noise figure of 4.8 dB. The image rejection ratio(IRR) is improved from 31 dB to 59.76 dB even with 1 dB and $5^{\circ}$ mismatch in gain and phase, respectively.

The Effect of Sleeper Space and Support Stiffness in Concrete Track on Vibration of Structure (콘크리트궤도 침목간격과 궤도지지강성이 진동에 미치는 영향)

  • Sung, Deok-Yong;Kim, Sang-Jin;Yang, Tae-Kyoung;Jang, Ki-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.725-732
    • /
    • 2011
  • The vibration resulting from railway operation is transmitted through the tunnel to adjacent buildings and the transmitted vibration radiates structure-borne noise which is causing a lot of public complaints by its negative effects to the buildings near tunnel. This study performed the parametric study about sleeper space and track support stiffness in order to reduce vibration on the concrete track and near structures. In this study, it was compared and performed vibration analysis and field test about these. In addition, as changing the sleeper space and track support stiffness, vibration of the structures was evaluated. Via this study, in terms of reducing the figure of the sleeper space and track support stiffness to the half, as vibrating acceleration transmitted through concrete round is getting reduced, it transmitted through the tunnel was analysed to the same phenomena. In conclusion, suggested track structure into this study, it can be applied to the track structure of existing line, and it is expected to be a new effective anti-vibration method to prevent public complaints.

  • PDF

A Study of Transceiver System for Ka-band Road Watch Radar (Ka 대역 도로 감시 레이더를 위한 송수신 시스템 연구)

  • Shin, Seung-Ha;Jun, Gye-Suk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11A
    • /
    • pp.933-940
    • /
    • 2011
  • In this paper, Ka-band transceiver for road watch radar system is designed and fabricated. The transceiver for road watch radar system is composed of waveform generator, frequency generator. IF transceiver and RF up/down converter. The transceiver especially has 3 different waveform mode for target detection range. The transceiver had over 150 MHz bandwidth in Ka-band and 22 dBm output power. The receiver gain and noise figure was 30 dB and 4 dB respectively. The receive dynamic range was 65.28dB and amplitude imbalance and phase imbalance of I/Q channel was 0.3 dB and 1.8 degree respectively. The transceiver meets the required electrical performances through the individual tests.

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

An S-Band Multifunction Chip with a Simple Interface for Active Phased Array Base Station Antennas

  • Jeong, Jin-Cheol;Shin, Donghwan;Ju, Inkwon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • An S-band multifunction chip with a simple interface for an active phased array base station antenna for next-generation mobile communications is designed and fabricated using commercial 0.5-${\mu}m$ GaAs pHEMT technology. To reduce the cost of the module assembly and to reduce the number of chip interfaces for a compact transmit/receive module, a digital serial-to-parallel converter and an active bias circuit are integrated into the designed chip. The chip can be controlled and driven using only five interfaces. With 6-bit phase shifting and 6-bit attenuation, it provides a wideband performance employing a shunt-feedback technique for amplifiers. With a compact size of 16 $mm^2$ ($4mm{\times}4mm$), the proposed chip exhibits a gain of 26 dB, a P1dB of 12 dBm, and a noise figure of 3.5 dB over a wide frequency range of 1.8 GHz to 3.2 GHz.

A Study for active MMIC (능동 MMIC mixer에 관한 연구)

  • Kim, Young-Gi;Baek, Kyoung-Sik;Kim, Hyuk;Yoon, Shin-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.14-24
    • /
    • 2001
  • An active MMIC L-band down converting mixer was designed by using GaAs FET with 0.5 ${\mu}$m gate length and 300 ${\mu}$m gate width. Main circuit topology was cascoded two active FETs. It consumed only 7.5 mA with 3V DC voltage supply. Conversion gain of 6.63 dB, minumium noise figure of 5.06 dB and Input $3^{rd}$ Order Intercept Point of 6.4 dBm were obtained. The chip size is 1.86 mm ${\times}$ 1.28 mm.

  • PDF

A Study on the Effects of the La Concentration on the Frequency Dependence of Dynamic Pyroelectric Properties of PLT Thin Films (PLT 박막에서 조성에 따른 동적 초전특성의 주파수 의존성에 관한 연구)

  • 차대은;장동훈;강성준;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.35-42
    • /
    • 2002
  • Modulation frequency dependences of the pyroelectric properties of PLT (P $b_{1-x}$ L $a_{x}$ $Ti_{1-x}$ 4/ $O_3$) thin films with La concentrations of 5, 10 and 15㏖% have been investigated by using the dynamic method. The PLT thin film with 10㏖% of the La concentration (PLT(10) thin film) shows the most excellent pyroelectric properties among the films. For PLT(10) thin film, the pyroelectric coefficient shows the maximum value of 6.6$\times$10$^{-9}$ C/$\textrm{cm}^2$ㆍK without frequency dependence. The figure of merits for the voltage responsivity and specific detectivity are 1.03$\times$10$^{-11}$ Cㆍcm/J and 1.46$\times$10$^{-9}$ Cㆍcm/J, respectively. Voltage responsivity corresponding to the pyroelectric voltage is almost constant at low modulation frequency and decreases in proportional to frequency at high modulation frequency. Voltage responsivity is 5.15 V/W at 8Hz. Noise equivalent power (NEP) and specific detectivity ( $D^{*}$) of the PLT(10) thin film are 9.93$\times$10$^{-8}$ W/H $z^{1}$2/ and 1.81$\times$10$^{6}$ cmH $z^{1}$2/W at the frequency of 100Hz, respectively. The results indicate that PLT(10) thin film is very suitable for pyroelectric IR sensors.s.s.

On-chip Inductor Modeling in Digital CMOS technology and Dual Band RF Receiver Design using Modeled Inductor (CMOS 공정을 이용한 on-chip 인덕터 모델링과 이를 이용한 Dual Band RF 수신기 설계)

  • Han Dong Ok;Choo Sung Joong;Lim Ji Hoon;Choi Seung Chul;Lee Seung Woong;Park Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.221-224
    • /
    • 2004
  • This paper has researched on-chip spiral inductor in digital CMOS technology by modeling physical structure based on foundry parameter. To show the possibility of its application to RF design, we designed dual band RF front-end receiver. The simulated receiver have gain of 23/23.5 dB and noise figure of 2.8/3.36 dB at 2.45/5.25 GHz, respectively. It occupies $16mm^2$ in $0.25{\mu}m$ CMOS with 5 metal layer.

  • PDF