• Title/Summary/Keyword: Noise Figure

Search Result 563, Processing Time 0.031 seconds

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

Characteristics of Corrosion Damages in Bottom Plate of Above Ground Tank by Acoustic Emission Signal (지상탱크 저판부의 부식손상 평가를 위한 음향방출 신호의 분석)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.64-72
    • /
    • 2007
  • Under the AE methods, the valid condition analysis and evaluation the leak etc, resulted by the AE signal pattern on the bottom plate of ground tank at full. In next more, the gradient of accumulation amplitude distribution analysis and comparison the energy, count, and duration time that noise of EMI signal were removed. EMI signal showed height-energy, count, and duration time, it also appeared great gradient of accumulation distribution. Then, with the pure remaining AE signals cluster analysis and location. It would possibly assume of damage with corrosion. Total cluster 20 and energy showed between the maximum 11,990 and 8,565 which is much lower than above figure and event number showed from 8 to 5. Even when it difficult to certify damage by open, as it is raised higher height-sensitivity and threshold by 60 dB. It would possibly presume of location source more accurately.

  • PDF

Design of Variable Gain Receiver Front-end with Wide Gain Variable Range and Low Power Consumption for 5.25 GHz (5.25 GHz에서 넓은 이득 제어 범위를 갖는 저전력 가변 이득 프론트-엔드 설계)

  • Ahn, Young-Bin;Jeong, Ji-Chai
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.257-262
    • /
    • 2010
  • We design a CMOS front-end with wide variable gain and low power consumption for 5.25 GHz band. To obtain wide variable gain range, a p-type metal-oxide-semiconductor field-effect transistor (PMOS FET) in the low noise amplifier (LNA) section is connected in parallel. For a mixer, single balanced and folded structure is employed for low power consumption. Using this structure, the bias currents of the transconductance and switching stages in the mixer can be separated without using current bleeding path. The proposed front-end has a maximum gain of 33.2 dB with a variable gain range of 17 dB. The noise figure and third-order input intercept point (IIP3) are 4.8 dB and -8.5 dBm, respectively. For this operation, the proposed front-end consumes 7.1 mW at high gain mode, and 2.6 mW at low gain mode. The simulation results are performed using Cadence RF spectre with the Taiwan Semiconductor Manufacturing Company (TSMC) $0.18\;{\mu}m$ CMOS technology.)

A study on the Frequency Dependence of Dynamic Pyroelectric Properties for $Pb_{1-x}La_{x}Ti_{1-x/4}O_3$(x=0.1)(PLT(10)) Ferroelectric Thin Film ($Pb_{1-x}La_{x}Ti_{1-x/4}O_3$(x=0.1)(PLT(10)) 강유전체 박막에서 동적 초전특성의 주파수 의존성에 관한 연구)

  • 차대은;장동훈;강성준;윤영섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.104-107
    • /
    • 2001
  • The fabricated La-modified lead titanate (PLT) thin flirt without poling treatment was investigated for modulation frequency dependence of pyroelectric properties by the dynamic method. $Pb_{1-x}La_{x}Ti_{1-x/4}O_3$PLT (x=0.1) thin film having 10 mol% La content was deposited on a Pt/$TiO_{x}$/$SiO_2$/Si substrate by sol-gel method. The PLT(10) thin film exhibits a relatively excellent dielectric property. The pyroelectric coefficient (p) of the PLT(10) thin film is 6.6 x $10^{-9}$C/$\textrm{cm}^2$.K without frequency dependence. The figure of merits for the voltage responsivity and specific detectivity are 1.03${\times}$$10^{-11}$/C.cm/J and 1.46 x $10^{-9}$C.cm/J, respectively. The PLT(10) thin film has voltage responsivity ($R_{V}$) of 5.15 V/W at 8 Hz. Noise equivalent power (NEP) and specific detectivity (D*) of the PLT(10) thin film are 9.93 x $10^{-8}$W/Hz$^{1/2}$ and 1.81 x $10^{6}$ cmHz$^{1/2}$/W at the same frequency of 100 Hz, respectively. The results means that PLT thin film having 10 mol % La content is suitable for the sensing materials of pyroelectric IR sensors.

  • PDF

Design and Development of 200 W TRM on-board for NEXTSat-2 X-band SAR (차세대소형위성2호의 X대역 합성 개구 레이더 탑재를 위한 200 W급 송·수신 모듈의 설계 및 개발)

  • Jeeheung Kim;Hyuntae Choi;Jungsu Lee;Tae Seong Jang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.487-495
    • /
    • 2022
  • This paper describes the design and development of a high-power transmit receive module(TRM) for mounting on X-band synthetic aperture radar(SAR) of the NEXTSat-2. The TRM generates a high-power pulse signal with a bandwidth of 100 MHz in the target frequency range of X-band and amplifies a low-noise on the received signal. Tx. path of the TRM has output signal level of more than 200 watts (53.01 dB), pulse droop of 0.35 dB, signal strength change of 0.04 dB during transmission signal output, and phase change of 1.7 ˚. Rx. path has noise figure of 3.99 dB and gain of 37.38 ~ 37.46 dB. It was confirmed the TRM satisfies all requirements. The TRM mounted on the NEXTSat-2 flight model(FM) which will be launched using the KSLV-II (Nuri).

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback (Inductive Shunt 피드백을 이용한 고선형성 광대역 저잡음 증폭기)

  • Jeonng, Nam Hwi;Cho, Choon Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1055-1063
    • /
    • 2013
  • Low noise amplifiers(LNAs) are an integral component of RF receivers and are frequently required to operate at wide frequency bands for various wireless systems. For wideband operation, important performance metrics such as voltage gain, return loss, noise figures and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high input matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor between gate and drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this LNA is $0.202mm^2$, including pads. Measurement results illustrate that input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 7~8 dB over 1.5~13 GHz. In addition, good linearity(IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.

Denoising of Digital Mammography Images Using Wavelet Transform (웨이블릿을 이용한 디지털유방영상의 노이즈 제거)

  • Choi, Seokyoon;Ko, Seongjin;Kang, Sesik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.181-189
    • /
    • 2013
  • The optimum exposure parameters are found when examined using the automatic mode in FFDM. improve the image quality by applying denoising algorithm and propose methods to reduce AGD(Average Grandular Dose) a patient can receive. For the experiment, Nuclear Associates Model 18-222 phantom was the used, and the entrance dose and AGD were measured. And then, Signal, Noise, SNR and FOM(Figure of Merit) were measured, compared and analyzed image denoising before and after. As the experiment result, first, SNR was the highest at Mo/Mo 23kVp and W/Rh 35kvp was the lowest for the average glandular dose. It showed to use 28kVp of W/Rh to be the best through the result of FOM. SNR was the highest at Mo/Mo 23kVp(image denoising), and it showed to W/Rh and 28kVp to be the best in the FOM result which AGD was considered at the same time. By the image denoising, it is possible to reduce noise while maintain important information in the image.

Reconfigurable CMOS low-noise amplifier for multi-mode/multi-band wireless receiver (다중모드/다중대역 무선통신 수신기를 위한 재구성 가능 CMOS 저잡음 증폭기)

  • Hwang, Bo-Hyun;Jung, Jae-Hoon;Kim, Shin-Nyoung;Jeong, Chan-Young;Lee, Mi-Young;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.111-117
    • /
    • 2006
  • Reconfigurable CMOS low-noise amplifier (LAN) has been developed for multi-mode/multi-band wireless receiver. By employing common-gate input stage, the performance can be optimized for multiple operation bands by simply controlling the output load impedance. Although the conventional common-gate LAN has larger than 3dB noise figure (NF), the newly developed negative feedback scheme enables the common-gate input LNA to have less than 2dB NF. To have optimum linearity performance of wireless receiver, the gain of the LNA can be controlled. The LNA implemented in a 0.13mm CMOS technology shows $19{\sim}20dB$ voltage gain, $1.7{\sim}2.0dB$ NF, -2dBm iIP3 at $1.8{\sim}2.5GHz$ frequency range. The LNA dissipates 7mW from a 1.2V supply voltage.

Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network (60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.21-27
    • /
    • 2004
  • In this paper, millimeter-wave monolithic integrated circuit(MIMIC) low noise amplifier(LNA) for V-band, which is applicable to 60 GHz wireless local area network(WLAN), was fabricated using the high performance 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate pseudomorphic high electron mobility transistor(PHEMT). The DC characteristics of PHEMT are drain saturation current density(Idss) of 450 mA/mm and maximum transconductance(gm, max) of 363.6 mS/mm. The RF characteristics were obtained the current gain cut-off frequency(fT) of 113 GHz and the maximum oscillation frequency(fmax) of 180 GHz. V-band MIMIC LNA was designed using active and passive device library, which is composed of 0.1 ${\mu}{\textrm}{m}$ $\Gamma$-gate PHEMT and coplanar waveguide(CPW) technology. The designed V-band MIMIC LNA was fabricated using integrated unit processes of active and passive device. The measured results of V-band MIMIC LNA are shown S21 gain of 21.3 dB, S11 of -10.6 dB at 60 GHz and S22 of -29.7 dB at 62.5 GHz. The measured result of V-band MIMIC LNA was shown noise figure (NF) of 4.23 dB at 60 GHz.

A Study on Design and Implementation of Low Noise Amplifier for Satellite Digital Audio Broadcasting Receiver (위성 DAB 수신을 위한 저잡음 증폭기의 설계 및 구현에 관한 연구)

  • Jeon, Joong-Sung;You, Jae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.213-219
    • /
    • 2004
  • In this paper, a LNA(Low Noise Amplifier) has been developed, which is operating at L-band i.e., 1452∼1492 MHz for satellite DAB(Digital Audio Brcadcasting) receiver. The LNA is designed to improve input and output reflection coefficient and VSWR(Voltage Standing Wave Ratio) by balanced amplifier. The LNA consists of low noise amplification stage and gain amplification stage, which make a using of GaAs FET ATF-10136 and VNA-25 respectively, and is fabricated by hybrid method. To supply most suitable voltage and current, active bias circuit is designed Active biasing offers the advantage that variations in $V_P$ and $I_{DSS}$ will not necessitate a change in either the source or drain resistor value for a given bias condition. The active bias network automatically sets $V_{gs}$ for the desired drain voltage and drain current. The LNA is fabricated on FR-4 substrate with RF circuit and bias circuit, and integrated in aluminum housing. As a reults, the characteristics of the LNA implemented more than 32 dB in gain. 0.2 dB in gain flatness. lower than 0.95 dB in noise figure, 1.28 and 1.43 each input and output VSWR, and -13 dBm in $P_{1dB}$.