• Title/Summary/Keyword: Noise Evaluation

Search Result 2,416, Processing Time 0.025 seconds

Investigating the adequacy of Rubber Ball Impactor for Floor Impact Noise Evaluation (바닥충격음 평가를 위한 고무공 충격원의 타당성 검토)

  • Hyung Joon, Moon;Jeong Ho, Jeong;Sung Chan, Lee;Jin Yong, Jeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.350.2-350
    • /
    • 2002
  • The purpose of this study was to present the possible use of a new standard impactor, the rubber ball (so-called, impact ball), and to assess its evaluation method as fur heavy-weight impact in multi-story residential buildings. Several experiments were carried out to investigate the effect of the impactor on noise propagation in reinforced concrete buildings. Then, the noise from the impact ball was psychoacoustically evaluated. (omitted)

  • PDF

Procedures for the noise impact assesment of high-speed trains (고속철도 차량의 소음영향 평가 절차)

  • Choi Sunghoon;Lee Chan-Woo;Cho Jun-Ho;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.387-392
    • /
    • 2004
  • There has been an increasing demand for the noise impact assessment by the high-speed trains due to the expansion of high-speed rails. This paper provides procedures for the evaluation and the assessment of the potential noise impact resulting from proposed high-speed rails. Firstly the official specifications for the railway noise have been reviewed, and the procedures for the initial noise evaluation and the detailed noise analysis have been described.

  • PDF

Sound Quality evaluation of the interior noise for the driving vehicle using Mahalanobis Distance (Mahalanobis Distance 를 이용한 주행중 차량 실내소음의 음질평가)

  • Park, Sang-Gil;Kim, Ho-San;Bae, Chul-Yong;Lee, Bong-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.318-321
    • /
    • 2007
  • Since human listening is very sensitive to sound, a subjective index of a sound quality is required. Therefore, in the analysis for each situation, the sound evaluation is composed with sound quality factor. Many researchers spends their effort to make a more reliable and more accurate of sound in term of sound quality index for various system noise. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. Threrefore, in this study Mahalanobis distance for the vehicle interior noise was derived using the objective SQ except jury test. Finnaly, the results of the SQ evaluation was analyzed discrimination between reference and abnormal group.

  • PDF

Sound Quality Evaluation of Interior Noise of Driving Vehicle Using Mahalanobis Distance (Mahalanobis Distance를 이용한 주행 중 차량 실내소음의 음질평가)

  • Park, Sang-Gil;Lee, Hae-Jin;Bae, Chul-Yong;Lee, Bong-Hyun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-60
    • /
    • 2008
  • Since human listening is very sensitive to sound, for evaluating of a sound quality is required. Therefore, in the analysis for each situation, the sound evaluation is composed with sound quality factor. My researchers spends their effort to make a more reliable and more accurate of sound in term of sound quality index for various system noise. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are highly dependent on jury test and have many difficulties due to various environmental factors. So, to reduce jury test weight. we suggested a new method using Mahalanobis distance for SQ evaluation. Threrefore, in this study Mahalanobis distance for the vehicle interior noise was derived using the objective SQ except jury test. Finnaly, the results of the SQ evaluation was analyzed discrimination between reference and abnormal group.

Degradation Estimation Of Material by Barkhausen Noise Analysis (바크하우젠 노이즈 해석에 의한 재료의 열화도 평가)

  • Lee Myung Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.38-46
    • /
    • 2005
  • The destructive method is reliable and widely used for the estimation of material degradation but it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. In this study, various nondestructive evaluation(NDE) parameters of the Barkhausen noise method, such as MPA(Maximum Peak Amplitude), RMS, IABNS(Internal Area of Barkhausen Noise on Signal) and average amplitude of frequency spectrum are investigated and correlated with thermal damage level of 2.25cr-1.0Mo steel using wavelet analysis. Those parameters tend to increase while thermal degradation proceeds. It also turns out that the wavelet technique can help to reduce experimental false call in data analysis.

A Development of Sound Quality Index of an Intake and Exhaust System for High Quality Improvement of Luxury Vehicles (차량 고급감 향상을 위한 흡배기계 음질지수 개발)

  • Lee, Jong-Kyu;Cho, Teock-Hyeong;Seo, Dae-Won;Lim, Yun-Soo;Won, Kwang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.234-243
    • /
    • 2012
  • In this paper, a sound quality indices for the evaluation of vehicle intake and exhaust noise were developed through a correlation analysis of objective measurement data and subjective evaluation data. At first, intake and exhaust orifice noise were measured at the wide-open throttle sweep condition. And then, acoustic transfer function between intake orifice noise and interior noise at the steady state condition was measured. Also, acoustic transfer function for exhaust system was measured as the same method. Simultaneously, subjective evaluation was carried out by the paired comparison and semantic differential method by 27 engineers. Next, the correlation analysis between the psycho-acoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding sound quality index for the intake and exhaust noise was obtained from the multiple factor regression method. At last, the effectiveness of the proposed index was investigated.

A study on the capability of inverse A weighting through the auditory perception test (청감실험을 통한 역A특성 평가방법의 타당성 검토)

  • 이성찬;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.586-591
    • /
    • 2002
  • Recently, the research and discussion to set up the evaluation standard for nor impact noises in multistory residential buildings has been vividly carried out In Korea. Therefore, the correlation between the methods and auditory responses was investigated through this research to investigate the applicability of the L index evaluation method and the reverse A characteristics evaluation method that are listed in JIS A 1419 since Japanese circumstance are similar to Korean after evaluating the duality of Korean multistory residential buildings. As a result, it was found that the correlation between the value resulted from L index evaluation and the value from reverse A characteristics evaluation is high. In addition, it was also revealed that human responses to each Impacter was similar. Consequently, it is considered th:31 the tendency about the two methods would be similar.

  • PDF

Integrated Test and Evaluation for Improvement of Vehicle Road Noise (승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구)

  • 고강호;허승진;국형석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

Typicality of Vocabulary for evaluation on Instrument-Noise generated at Loud Noise Workplace (고소음 작업장에서 발생하는 기기소음 평가를 위한 어휘의 유형화)

  • Ju, Duck-Hoon;Kook, Jung-Hun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.242-247
    • /
    • 2007
  • After the Industrialization of 1960s, while it has greatly contributed to the industrial development owing to acceleration of mechanization, but it is real situation that the countermeasure to Noise Damage generating at the loud noise workshop is scarcely made. Especially, the Instrument-Noise made at factory and workplace is so shocking and repeatedly reiterating terrible noise that most of the spot workers are forcedly imposing such dangers as the severe unpleasant feeling and hearing impairments. On such point of view, this Research has attempted to extract the proper Rating Vocabulary in order for valuation on Instrument Noise made at the terrible noise-workplace, therefore it is considering that those extracted Vocabularies could be utilized as the useful materials for appraisal on Instrument Noise, also for establishment of Regulation-Standard with regard to Acoustic Psychology Experimentation and Instrument Noise.

  • PDF

Evaluation on Attenuation for Sound-absorbing Measures of Loud Noisy Work-site using Auralizational Technique (가청화를 이용한 고소음 작업장의 흡음대책 평가)

  • Yun, Jae-Hyun;Kim, Jae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.742-752
    • /
    • 2010
  • In case of the working machine that using in the loud-noisy workplace, as it generates the loud-noise, it is influencing a physical, mental bad effect to those workers. Accordingly, though the noise countermeasure for the loud-noisy workplace is acutely requiring, until now, those methods that wearing the soundproof-protection tool, or restriction the working hours, and minimize the noise exposure volume, were mainly used. However, such noise countermeasures occur many problem points. On such point of view, using the acoustic simulation technique, let the workers to choose the workplace where suffering many damages due to the noise of working machine, and after grasp the physical property of working machine and indoor acoustic characteristic, this Study has attempted to grasp the reduction degree of noise level at before-improvement?after-improvement, through the sound-absorption measure. Passing through such preceding step, using auralizational technique based on the noise of working machine of before-improvement after-improvement, and by conduct psycho-acoustics evaluation, this study intended to investigate the change degree of subject reaction. As the result of evaluation, it is considering that the noise-reduction countermeasure method for the loud-noisy workplace could be much effective, through the sound-absorption measure.