• Title/Summary/Keyword: Noise Contribution Analysis

Search Result 162, Processing Time 0.025 seconds

A Study on the Contribution of Each Mode in Vibration Response (진동응답에 나타난 모드의 기여도 평가에 관한 연구)

  • Jung, Soon-Chul;Lee, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.339-345
    • /
    • 2006
  • In this paper, a physically meaningful methodology which can assess the contribution of each vibration mode to various vibration response signals (displacement, velocity, acceleration) is developed. Based on these results, the problem of quantitative assessment of the relative importance of a structural system's vibrational modes is discussed. In addition, a direct method which ran assess the relative importance of each mode from uniformly sampled experimental data is also proposed.

Transfer Path Analysis on the Passenger Car Interior Noise (승용차 실내소음의 전달경로 해석)

  • 지태한;최윤봉
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.97-102
    • /
    • 1999
  • Structure-borne noise is an important aspect to consider during the design and development of a vehicle. In this work. it was desired to identify the primary paths associated with structure-borne noise generated from the engine and front suspension. An experimental source-path-receiver model was used to characterize the system. A variety of primary sources such as engine. tires or exhaust system generate vibrations of the inner surfaces of the passenger compartment of a vehicle which subsequently radiate noise. The source was characterized by the force acting at the engine-to-body interface. and the path was characterized by pressure over force FRF's. The excitation forces were indirectly determined using dynamic stiffness of rubber mount or the system accelerance matrix. Through these analysis, path contribution diagram which is well expressed primary noise path is obtained.

  • PDF

An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration of a Rotational Machine (회전체 진동으로 인한 판넬 방사소음의 실험적 기여도 분석)

  • 국형석;허승진;고강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. First, spectral decomposition method is used to decompose the spectrogram obtained in experiments into source function and noise transfer function, and then major noise generation sources are investigated. Among the noise sources involved in the fan unit. this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

Excavator cabin modeling for noise analysis using SEA (SEA 를 이용한 굴삭기 차실 소음 모델 개발)

  • Kang, Junghwan;Park, Soodong;Kwak, Hyungtaek;Kim, Jooho;Kim, Seongjae;Kim, Indong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.156-158
    • /
    • 2014
  • The interior noise of an excavator cabin is important factor related to operation efficiency. For analyzing the cabin air-borne sound, the SEA cabin model was developed using VA One. Analysis result using measured surface SPL of cabin was compared with test data. And the noise reduction guide of cabin was suggested with contribution and sensitivity analysis results of major design variables using developed SEA analysis.

  • PDF

Identification of Airborne-noise Source and Analysis for Noise Source Contribution of a GDI Engine Using Sound Intensity Method (음향 인텐시티법을 이용한 GDI 엔진 소음원 규명 및 소음 기여도 분석에 관한 연구)

  • Kim, Byung-Hyun;Lee, Sang-Kwon;Yoon, Joon-Seok;Shin, Ki-Chul;Lee, Sang-Jik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.985-993
    • /
    • 2012
  • In this paper, a new method is proposed to estimate the sound pressure generated from gasoline direct injection (GDI) engine. There are many noise sources as much as components in GDI engine. Among these components, fuel pump, fuel injector, fuel rail, pressure pump and intake/exhaust manifolds are major components generated from top of the engine. In order to estimate the contribution of these components to engine noise, the total sound pressure at the front of the engine is estimated by using airborne source quantification (ASQ) method. Airborne source quantification method requires the acoustic source volume velocity of each component. The volume velocity has been calculated by using the inverse method. The inverse method requires many tests and has ill-condition problem. This paper suggested a method to obtain volume velocity directly based on the direct measurement of sound intensity and particle velocity. The method is validated by using two known monopole sources installed at the anechoic chamber. Finally the proposed method is applied to the identification and contribution of noise sources caused by the GDI components of the test engine.

Development of the Analysis Tool for Contribution from a Noise Source with LabVIEW (랩뷰를 이용한 소음원 기여도 분석 툴 개발)

  • Choi, Ki-Soo;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.650-651
    • /
    • 2008
  • In this thesis, source identification tool for NI-PXI equipment is developed with LabVEIW. For the purpose of examining propriety of developed tool, simulation is performed with several signals that have different frequency range. After checking the coherence functions for concerned frequency domain, an experiment is conducted on an evaporator that cause the principal noise of a refrigerator.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Analysis of Traffic Noise Propagation around Main Roads in Kwang-ju City

  • Choi, Hyung-II;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • This paper describes an analysis of various factors affecting traffic noise propagation, including the distance from the road, existence of a direct path of noise propagation, density and height of buildings, and procedure for predicting the attenuation of noise levels from roads. The analysis is based on a multiple number of regression models, utilizing the quantification theory of the first kind. This study incorporates a large amount of survey data concerning traffic noise propagation. The survey of the traffic noise propagation around main roads was carried out in several residential areas, mainly in Kwangju. The attenuation of noise levels measured provided 691 usable data samples. A multiple regression analysis demonstrated that the distance from the road makes the most significant contribution to the attenuation of the noise level. The second contributor was found to be the existence of a direct path of noise propagation. The building density and average height of the buildings also affected the attenuation of the noise level considerably. Other factors, such as the height of the building behind the receiver microphone and the number of traffic lanes on the noise-source roads, did not contribute as much to the attenuation of the noise level as the factors mentioned avove.

  • PDF