• Title/Summary/Keyword: Node Energy

Search Result 1,262, Processing Time 0.029 seconds

A Tabu Search Algorithm for Node Reprogramming in Wireless Sensor Networks (무선 센서 네트워크에서 노드 재프로그래밍을 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.596-603
    • /
    • 2019
  • A reprogramming operation is necessary to update the software code of the node to change or update the functionality of the deployed node in wireless sensor networks. This paper proposes an optimization algorithm that minimizes the transmission energy of a node for the purpose of reprogramming a node in wireless sensor networks. We also design an algorithm that keeps energy consumption of all nodes balanced in order to maintain the lifetime of the network. In this paper, we propose a Tabu search algorithm with a new neighborhood generation method for minimizing transmission energy and energy consumption in wireless sensor networks with many nodes. The proposed algorithm is designed to obtain optimal results within a reasonable execution time. The performance of the proposed Tabu search algorithm was evaluated in terms of the node's transmission energy, remaining energy, and algorithm execution time. The performance evaluation results showed better performance than the previous methods.

Sensor Network Routing using Data Aggregation (데이터 병합을 이용한 센서 네트워크 라우팅)

  • Kim, Young-Kyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.4
    • /
    • pp.237-244
    • /
    • 2007
  • In this paper we investigate the benefits of a data aggregation to prolong the lifetime of wireless sensor networks. To reduce the overload of messages from source node to sink node, data aggregation technique is generally used at intermediate node in path. The DD-G(Directed Diffusion-Greedy) can diminish the consumption of node energy by establishing energy effective single path from source to destination. In this case, the nodes near sink node have some problems, i) overly concentration of energy consumption, ii) increase of message delay time. To solve these problems, we propose a new data aggregation method which consider distribution of network overload, especially at the nodes close to sink node. The result shows that it can save energy and network delay time.

  • PDF

Balancing of Routing Energy Consumption in Wireless Ad-hoc Networks (무선 Ad-hoc 망에서 라우팅 에너지 소비의 균형 기법)

  • 강용혁;엄영익
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.97-101
    • /
    • 2000
  • Energy consumption is considered as a principal ingredient in mobile wireless ad-hoc networks. In such a network, most of mobile nodes takes a role in forwarding messages received from neighbor nodes. Energy of these nodes is consumed in different rates depending on message traffic routes. This paper proposes a scheme to balance routing energy consumption by transferring routing function from node with small residual energy to node with enough residual energy. This scheme requires additional local message transfer, increasing the energy consumption of nodes to transfer routing function, and increasing total energy consumption of ad-hoc network. But balancing of energy consumption make the system lifetime the longer and increase the average node lifetime.

  • PDF

Security Scheme for Prevent malicious Nodes in WiMAX Environment (노드간 에너지 소비를 효율적으로 분산시킨 PRML 메커니즘)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Nam-Kyu;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.774-784
    • /
    • 2009
  • A wireless sensor network consisting of a large number of nodes with limited battery power should minimize energy consumption at each node to prolong the network lifetime. To improve the sensitivity of wireless sensor networks, an efficient scheduling algorithm and energy management technology for minimizing the energy consumption at each node is desired. ill this paper, we propose energy-aware routing mechanism for maximum lifetime and to optimize the solution quality for sensor network maintenance and to relay node from its adjacent cluster heads according to the node"s residual energy and its distance to the base station. Proposed protocol may minimize the energy consumption at each node, thus prolong the lifetime of the system regardless of where the sink is located outside or inside the cluster. Simulation results of proposed scheme show that our mechanism balances the energy consumption well among all sensor nodes and achieves an obvious improvement on the network lifetime. To verify propriety using NS-2, proposed scheme constructs sensor networks adapt to current model and evaluate consumption of total energy, energy consumption of cluster head, average energy dissipation over varying network areas with HEED and LEACH-C.

Localized Path Selection Algorithm for Energy Efficiency and Prolonging Lifetime in Ad-Hoc Networks (에드 혹 네트워크에서 에너지 효율성과 네트워크 수명 연장을 위한 지역적 경로 선택 알고리즘)

  • Lee, Ju-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2010
  • In ad-hoc network, the technique to efficiently consume the limited amounts of energy is an important issue since the wireless terminal node is operated on batteries as their energy resource. In order to extend the system lifetime, through a balanced energy consumption, we must delay the situation in which a particular terminal node's energy is depleted and results in system disconnection. Also, the link, which has low reliability due to the mobility of the node, should be avoided considering the key element when setting up the route. The proposed CMLR method in this paper enables to increase the efficiency of energy consumption with a new cost function considering the residue energy of node, error rate of link, and transmission energy consumption. This method is extending the network lifetime and increasing the energy efficiency by compromising the value between the minimization of the transmission energy consumption and maximization of the node's lifetime. Through the simulations the proposed CMLR algorithm was verified by showing better performance over the conventional methods in terms of network lifetime and path efficiency.

An Efficient Routing Protocol for Mobile Sinks in Sensor Networks (센서 네트워크에서 모바일 싱크를 위한 효율적인 라우팅 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.640-648
    • /
    • 2017
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. In order to use the energy of the sensor node efficiently, researches applying mobile sink to the sensor network have been actively carried out. The sink node moves the sensor network, collects data from each sensor node, which spread the energy concentrated around the sink node, thereby extending the entire life cycle of the network. But, when the sink node moves, it requires a reset of the data transmission path, which causes a lot of control messages and delays. In this paper, we propose a CMS(Cluster-based Mobile Sink) method to support the movement of mobile sink in a cluster sensor environment. The proposed scheme minimizes an amount of control messages without resetting the routing paths of entire sensor networks by supporting the sink mobility path using the neighbor cluster list. And, it simplifies the routing path setup process by setting a single hop path between clusters without a gateway. The experiment results show that the proposed scheme has superior energy efficiency in processing and network structure, compared with existing clustering and mesh routing protocols.

Reservation based Multichannel CSMA Protocol for Improvement of Energy Consumption and QoS in Wireless Sensor Networks (무선 센서 네트워크 환경에서 에너지 소비 및 QoS를 고려한 예약기반 Multichannel CSMA 프로토콜)

  • Han, Jung-Ahn;Kim, Yun-Hyung;Lee, Moon-Ho;Kim, Byung-Gi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.143-151
    • /
    • 2007
  • One of the consideration things to design protocol in wireless sensor networks is to maximize lifetime of sensor node as reducing energy consumption. In this paper propose reserve based multichannel CSMA mac protocol for minimizing energy consumption which arise from collision and waiting retransmission at channel access process in mac layer Each sensor node which constitute sensor networks has data channel and control channel. And as sensor node reserve channel for data transmission by using control channel and receipt node allow reservation node to use data channel, sending node can abbreviate try of retransmission after random interval time. Also, When sending node delivers selects option channel in available channels to receipt node, the receipt node decide whether the channel is available to oneself and through the result select transmission channel ultimately. Performance evaluation compare with previous simple multichannel CSMA.

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

A Study on the Efficient TICC(Time Interval Clustering Control) Algorithm using Attribute of Node (노드의 속성을 고려한 효율적인 TICC(Time Interval Clustering Control) 알고리즘에 관한 연구)

  • Kim, Young-Sam;Doo, Kyoung-Min;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1696-1702
    • /
    • 2008
  • A MANET(Mobile Ad-hoc Network) is a multi-hop routing protocol formed by a collection without the intervention of infrastructure. So the MANET also depended on the property as like variable energy, high degree of mobility, location environments of nodes etc. Generally the various clustering technique and routing algorithm would have proposed for improving the energy efficiency. One of the popular approach methods is a cluster-based routing algorithm using in MANET. In this paper, we propose an algorithm techniques which is TICC (Time Interval Clustering Control) based on energy value in property of each node for solving cluster problem. It provides improving cluster energy efficiency how can being node manage to order each node's energy level. TICC could be able to manage the clustering, re-configuration, maintenance and detection of Node in MANET. Furthermore, the results of modeling shown that Node's energy efficiency and lifetime are improved in MANET.

A Robust Transport Protocol Based on Intra-Cluster Node Density for Wireless Sensor Networks (무선 센서 네트워크를 위한 클러스터 내 노드 밀도 기반 트랜스포트 프로토콜)

  • Baek, Cheolheon;Moh, Sangman
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.6
    • /
    • pp.381-390
    • /
    • 2015
  • The efficient design of a transport protocol contributes to energy conservation as well as performance improvement in wireless sensor networks (WSNs). In this paper, a node-density-aware transport protocol (NDTP) for intra-cluster transmissions in WSNs for monitoring physical attributes is proposed, which takes node density into account to mitigate congestion in intra-cluster transmissions. In the proposed NDTP, the maximum active time and queue length of cluster heads are restricted to reduce energy consumption. This is mainly because cluster heads do more works and consume more energy than normal sensor nodes. According to the performance evaluation results, the proposed NDTP outperforms the conventional protocol remarkably in terms of network lifetime, congestion frequency, and packet error rate.