• Title/Summary/Keyword: Nodal Analysis

Search Result 578, Processing Time 0.022 seconds

Finite Element Vibration Analysis of Multiply Interconnected Structure with Cyclic Symmetry (순환대칭으로 다중연결된 구조물의 유한요소 진동해석)

  • 김창부;안종섭;심수섭
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.637-644
    • /
    • 1997
  • In this paper, a method of finite element analysis is presented for efficient calculation of vibration characteristics of not only simply interconnected structure with cyclic symmetry but also multiply interconnected structure with cyclic symmetry by using discrete Fourier trandform by means of a computer with small memory in a short time. Simply interconnected structure means it is composed of substructures which are adjacent themselves in circumferential direction. First, a mathematical model of multiply interconnected structure with cyclic symmetry is defined. The multiply interconnected structure is partitioned into substructures with the same goemetric configuration and constraint eqauations to be satisfied on connecting boundaries are defined. Nodal displacements and forces are transformed into complex forms through discrete Fourier transform and then finite element analysis is performed for just only a representative substructure. In free vibration analysis, natural frequencies of a whole structure can be obtained through a series of calculation for a substructure along the number of nodal diameter. And in forced vibration analysis, forced response of whole structure can be achieved by using inverse discrete Fourier transform of results which come from analysis for a substructure.

  • PDF

FUNDAMENTALS AND RECENT DEVELOPMENTS OF REACTOR PHYSICS METHODS

  • CHO NAM ZIN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.25-78
    • /
    • 2005
  • As a key and core knowledge for the design of various types of nuclear reactors, the discipline of reactor physics has been advanced continually in the past six decades and has led to a very sophisticated fabric of analysis methods and computer codes in use today. Notwithstanding, the discipline faces interesting challenges from next-generation nuclear reactors and innovative new fuel designs in the coming. After presenting a brief overview of important tasks and steps involved in the nuclear design and analysis of a reactor, this article focuses on the currently-used design and analysis methods, issues and limitations, and current activities to resolve them as follows: (1) Derivation of the multi group transport equations and the multi group diffusion equations, with representative solution methods thereof. (2) Elements of modem (now almost three decades old) diffusion nodal methods. (3) Limitations of nodal methods such as transverse integration, flux reconstruction, and analysis of UO2-MOX mixed cores. Homogenization and related issues. (4) Description of the analytic function expansion nodal (AFEN) method. (5) Ongoing efforts for three-dimensional whole-core heterogeneous transport calculations and acceleration methods. (6) Elements of spatial kinetics calculation methods and coupled neutronics and thermal-hydraulics transient analysis. (7) Identification of future research and development areas in advanced reactors and Generation-IV reactors, in particular, in very high temperature gas reactor (VHTR) cores.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

A Study on Spatial Characteristics of Indoor Rest Zones in the Campus Buildings (대학 캠퍼스 건물 내부휴게공간의 공간적 특성에 관한 연구)

  • Park, Joon-Soo;Kim, Sung-Ah;Suh, Ki-Young;Park, Chang-Hui;Yi, Seong-Chang
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.10 no.3
    • /
    • pp.37-43
    • /
    • 2003
  • This study investigates the physical characteristics of indoor rest zones using the Space Syntax Method. A conceptual framework is based on analysis of design works presented in competitions(544 rest zones of 24 buildings on 7 campuses). The analysis on the unit type of rest zones showed that they were mostly available as open type, followed by semi-open type and outdoor rest places. On the other hand, by classifying the shape of whole building into traffic lines and nodal points, it was found that the buildings with 3 or more traffic lines have lower availability than others, because the buildings required more nodal points along a little higher complexity and zoning formed at increased nodal points between building masses. The analysis on the location of rest zones on traffic lines showed that hall type was most excellent in the level of availability. Finally, the analysis on the floor height showed that hall-like open rest places and outdoor places like rooftop garden functioned as a factor to enhance the integration of different spaces. In conclusion, this research will help the follow-up studies make spatial creation planning that may enhance the spatial efficiency and availability of Indoor rest zones on the campus.

Conservative Neck Dissection in Oral Cancer Patients: a 5 Year Retrospective Study in Malaysia

  • Balasundram, Sathesh;Mustafa, Wan Mahadzir Wan;Ip, Jolene;Adnan, Tassha Hilda;Supramaniam, Premaa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.4045-4050
    • /
    • 2012
  • Objective: The impact of ablative oral cancer surgery was studied, with particular reference to recurrence and nodal metastasis, to assess survival probability and prognostic indicators and to elucidate if ethnicity influences the survival of patients. Methods: Patients who underwent major ablative surgery of the head and neck region with neck dissection were identified and clinical records were assessed. Inclusion criteria were stage I-IV oral and oropharyngeal malignancies necessitating resection with or without radiotherapy from 2004 to 2009. All individuals had a pre-operative assessment prior to the surgery. The post operative assessment period ranged from 1 year to 5 years. Survival distributions were analyzed using Kaplan-Meier curves. Results: 87 patients (males:38%; females:62%) were included in this study, with an age range of 21-85 years. Some 78% underwent neck dissections while 63% had surgery and radiotherapy. Nodal recurrence was detected in 5.7% while 20.5% had primary site recurrence within the study period. Kaplan-Meier survival analysis revealed that the median survival time was 57 months. One year overall survival (OS) rate was 72.7% and three year overall survival rate dropped to 61.5%. On OS analysis, the log-rank test showed a significant difference of survival between Malay and Chinese patients (Bonferroni correction p=0.033). Recurrence-free survival (RFS) analysis revealed that 25% of the patients have reached the event of recurrence at 46 months. One year RFS rate was 85.2% and the three year survival rate was 76.1%. In the RFS analysis, the log-rank test showed a significant difference in the event of recurrence and nodal metastasis (p<0.001). Conclusion: Conservative neck is effective, in conjunction with postoperative radiotherapy, for control of neck metastases. Ethnicity appears to influence the survival of the patients, but a prospective trial is required to validate this.

Comparative Analysis between Multilevel Sectioning with Conventional Haematoxylin and Eosin Staining and Immunohistochemistry for Detecting Nodal Micrometastases with Stage I and II Colorectal Cancers

  • Wong, Yin-Ping;Shah, Shamsul Azhar;Shaari, Noorsajida;Mohamad Esa, Mohd Shafbari;Sagap, Ismail;Isa, Nurismah Md
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1725-1730
    • /
    • 2014
  • Management of patients with stage II colorectal carcinomas remains challenging as 20 - 30% of them will develop recurrence. It is postulated that these patients may harbour nodal micrometastases which are imperceptible by routine histopathological evaluation. The aims of our study were to evaluate (1) the feasibility of multilevel sectioning method utilizing haematoxylin and eosin stain and immunohistochemistry technique with cytokeratin AE1/AE3, in detecting micrometastases in histologically-negative lymph nodes, and (2) correlation between nodal micrometastases with clinicopathological parameters. Sixty two stage I and II cases with a total of 635 lymph nodes were reviewed. Five-level haematoxylin and eosin staining and one-level cytokeratin AE1/AE3 immunostaining were performed on all lymph nodes retrieved. The findings were correlated with clinicopathological parameters. Two (3.2%) lymph nodes in two patients (one in each) were found to harbour micrometastases detected by both methods. With cytokeratin AE1/AE3, we successfully identified four (6.5%) patients with isolated tumour cells, but none through the multilevel sectioning method. Nodal micrometastases detected by both multilevel sectioning and immunohistochemistry methods were not associated with larger tumour size, higher depth of invasion, poorer tumour grade, disease recurrence or distant metastasis. We conclude that there is no difference between the two methods in detecting nodal micrometastases. Therefore it is opined that multilevel sectioning is a feasible and yet inexpensive method that may be incorporated into routine practice to detect nodal micrometastases in centres with limited resources.

Nano-continuum multi scale analysis using node deactivation techniques (절점 비활성화 기법을 적용한 나노-연속체 멀티스케일 해석 기법)

  • Rhee Seung-Yun;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.395-402
    • /
    • 2006
  • In analyzing the nano-scale phenomena or behaviors of nano devices or materials, it is often desirable to deal with more atoms than can be treated only with a full atomistic simulation. However, even now, it is advisable to apply the atomistic simulation to the narrow region where the deformation field changes rapidly but to apply the conventional continuum model to the region far from that region. This equivalent continuum model can be formulated by applying the Cauchy-Born rule to the exact atomistic potential as in the quasicontinuum method. To couple the atomistic model with the equivalent continuum model, continuum displacements are conformed to the molecular displacements at the discrete positions of the atoms within the bridging domain. To satisfy the coupling constraints, we apply the Lagrange multiplier method. The continuum model in the bridging model should be applied on the region where the deformation field changes gradually. Then we can make the nodal spacing in the continuum model be much larger than the atomic spacing. In the first step, we generate the atomic-resolution mesh with the nodal spacing equal to the atomic spacing, and then we eliminate the nodal degrees of freedom adaptively using the node deactivation techniques. We eliminate more DOFs as the regions are more far from the atomistic region. Computing time and computational resources can be greatly reduced by the present node deactivation technique in multi scale analysis.

  • PDF

Nonlinear Dynamic Analysis of a Large Deformable Beam Using Absolute Nodal Coordinates

  • Jong-Hwi;Il-Ho;Tae-Won
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.4
    • /
    • pp.50-60
    • /
    • 2004
  • A very flexible beam can be used to model various types of continuous mechanical parts such as cables and wires. In this paper, the dynamic properties of a very flexible beam, included in a multibody system, are analyzed using absolute nodal coordinates formulation, which is based on finite element procedures, and the general continuum mechanics theory to represent the elastic forces. In order to consider the dynamic interaction between a continuous large deformable beam and a rigid multibody system, a combined system equations of motion is derived by adopting absolute nodal coordinates and rigid body coordinates. Using the derived system equation, a computation method for the dynamic stress during flexible multibody simulation is presented based on Euler-Bernoulli beam theory, and its reliability is verified by a commercial program NASTRAN. This method is significant in that the structural and multibody dynamics models can be unified into one numerical system. In addition, to analyze a multibody system including a very flexible beam, formulations for the sliding joint between a very deformable beam and a rigid body are derived using a non-generalized coordinate, which has no inertia or forces associated with it. In particular, a very flexible catenary cable on which a multibody system moves along its length is presented as a numerical example.

Cross Layer Optimal Design with Guaranteed Reliability under Rayleigh block fading channels

  • Chen, Xue;Hu, Yanling;Liu, Anfeng;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3071-3095
    • /
    • 2013
  • Configuring optimization of wireless sensor networks, which can improve the network performance such as utilization efficiency and network lifetime with minimal energy, has received considerable attention in recent years. In this paper, a cross layer optimal approach is proposed for multi-source linear network and grid network under Rayleigh block-fading channels, which not only achieves an optimal utility but also guarantees the end-to-end reliability. Specifically, in this paper, we first strictly present the optimization method for optimal nodal number $N^*$, nodal placement $d^*$ and nodal transmission structure $p^*$ under constraints of minimum total energy consumption and minimum unit data transmitting energy consumption. Then, based on the facts that nodal energy consumption is higher for those nodes near the sink and those nodes far from the sink may have remaining energy, a cross layer optimal design is proposed to achieve balanced network energy consumption. The design adopts lower reliability requirement and shorter transmission distance for nodes near the sink, and adopts higher reliability requirement and farther transmission distance for nodes far from the sink, the solvability conditions is given as well. In the end, both the theoretical analysis and experimental results for performance evaluation show that the optimal design indeed can improve the network lifetime by 20-50%, network utility by 20% and guarantee desire level of reliability.

Second order of average current nodal expansion method for the neutron noise simulation

  • Poursalehi, N.;Abed, A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1391-1402
    • /
    • 2021
  • The aim of this work is to prepare a neutron noise calculator based on the second order of average current nodal expansion method (ACNEM). Generally, nodal methods have the ability to fulfill the neutronic analysis with adequate precision using coarse meshes as large as a fuel assembly size. But, for the zeroth order of ACNEM, the accuracy of neutronic simulations may not be sufficient when coarse meshes are employed in the reactor core modeling. In this work, the capability of second order ACNEM is extended for solving the neutron diffusion equation in the frequency domain using coarse meshes. For this purpose, two problems are modeled and checked including a slab reactor and 2D BIBLIS PWR. For validating of results, a semi-analytical solution is utilized for 1D test case, and for 2D problem, the results of both forward and adjoint neutron noise calculations are exploited. Numerical results indicate that by increasing the order of method, the errors of frequency dependent coarse mesh solutions are considerably decreased in comparison to the reference. Accordingly, the accuracy of second order ACNEM can be acceptable for the neutron noise calculations by using coarse meshes in the nuclear reactor core.