ArangoDB is a NoSQL database system that has been popularly utilized in many applications for storing large amounts of data. In order to apply a new NoSQL database system such as ArangoDB, to real work environments we need a benchmarking system that can evaluate its performance. In this paper, we design and implement a ArangoDB based benchmarking system that measures a kernel level performance well as an application level performance. We partially modify YCSB to measure the performance of a NoSQL database system in the cluster environment. We also define three real-world workload types by analyzing the existing materials. We prove the feasibility of the proposed system through the benchmarking of three workload types. We derive available workloads in ArangoDB and show that performance at the kernel layer as well as the application layer can be visualized through benchmarking of three workload types. It is expected that applicability and risk reviews will be possible through benchmarking of this system in environments that need to transfer data from the existing database engine to ArangoDB.
For content-based audio retrieval which is one of main functions in audio service, the techniques for extracting fingerprints from the audio source, storing and indexing them in a database are widely used. However, if the fingerprints of new audio sources are continually inserted into the database, there is a problem that space efficiency as well as audio retrieval performance are gradually deteriorated. Therefore, there is a need for techniques to support efficient expansion of audio database without periodic reorganization of the database that would increase the system operation cost. In this paper, we design a content-based audio retrieval system that solves this problem by using MapReduce and NoSQL database in a cluster computing environment based on the Shazam's fingerprinting algorithm, and evaluate its performance through a detailed set of experiments using real world audio data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국정보통신학회 2014년도 추계학술대회
/
pp.805-808
/
2014
The DBMS is a database management software system to access by people. It is an open source DBMS, such as MySQL and commercial services, such as ORACLE. Since MySQL has been acquired by Oracle, MariaDB released increase demand. NoSQL also are increasing, the trend is of interest, depending on the circumstances. Based on the same type of mass data, Depending on the performance comparison between the open source DBMS is required, and The study compared the performance between MariaDB and MongoDB. This paper proposes a DBMS for big data to process.
KIPS Transactions on Software and Data Engineering
/
제4권9호
/
pp.347-356
/
2015
Due to the rapid development of IoT(Internet of Things) technology, traditional taxis are connected through dispatchers and location systems. Typically, modern taxis have embedded with GPS(Global Positioning System), which aims for obtaining the route information. By analyzing the frequency of taxi trip events, we can find the frequent route for a given query time. However, a scalability problem would occur when we convert the raw location data of taxi trip events into the analyzed frequency information due to the volume of location data. For this problem, we propose a NoSQL based top-K query system for taxi trip events. First, we analyze raw taxi trip events and extract frequencies of all routes. Then, we store the frequency information into hash-based index structure of MongoDB which is a document-oriented NoSQL database. Efficient top-K query processing for frequent route is done with the top of the MongoDB. We validate the efficiency of our algorithms by using real taxi trip events of New York City.
Journal of the Korea Society of Computer and Information
/
제23권3호
/
pp.49-54
/
2018
A data warehouse is a system that collectively manages and integrates data of a company. And provides the basis for decision making for management strategy. Nowadays, analysis data volumes are reaching critical size challenging traditional data ware housing approaches. Current implemented solutions are mainly based on relational database that are no longer adapted to these data volume. NoSQL solutions allow us to consider new approaches for data warehousing, especially from the multidimensional data management point of view. In this paper, we extend the data warehouse design methodology based on relational database using star schema, and have developed a consistent design methodology from information requirement analysis to data warehouse construction for large scale data warehouse construction based on MongoDB, one of NoSQL.
Proceedings of the Korea Contents Association Conference
/
한국콘텐츠학회 2019년도 춘계종합학술대회
/
pp.445-446
/
2019
빅데이터 시대의 도래로 다양한 NoSQL 데이터베이스 엔진이 활용되고 있다. NoSQL 데이터베이스 엔진 기반의 다양한 응용들이 수행될 때 스토리지의 성능을 평가하기 위한 스토리지 벤치마킹 툴이 요구된다. 본 논문에서는 NoSQL 데이터베이스를 이용한 스토리지 벤치마킹 시스템을 설계한다. 제안하는 스토리지 벤치마킹 시스템은 IO 추적기를 통해 스토리지의 성능을 측정하고, 웹 UI를 통해 사용자 정의 워크로드 생성, 벤치마킹 실행, 결과 확인을 수행할 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
한국정보통신학회 2012년도 추계학술대회
/
pp.804-807
/
2012
Cloud service provider has to protect client's information securely since all the resources are offered by the service provider, and a large number of users share the resources. In this paper, a NoSQL-based anomaly detection system is proposed in order to enhance the security of mobile cloud services. The existing integrated security management system that uses a relational database can not be used for real-time processing of data since security log from a variety of security equipment and data from cloud node have different data format with unstructured features. The proposed system can resolve the emerging security problem because it provides real time processing and scalability in distributed processing environment.
The Journal of the Institute of Internet, Broadcasting and Communication
/
제18권6호
/
pp.237-242
/
2018
Recently, media data is increasing due to the development of Internet and SNS. Since photographs and videos often have geo-tags, many techniques have been developed to analyze them. In order to process various kind of such as SNS, NoSQL has been covered. However, most NoSQL does not have enough computation and query about spatial data. Therefore, in this paper, we designed and implemented a system for adding spatial operators using MongoDB among the representative NoSQL. Through this study, it is confirmed that various operators can be used and it is expected that various services can be performed using operators.
The management of sensor information requires the functions for registering, modifying and deleting rapidly sensor information about various many sensors. In this research, Celery and MongoDB are used for developing a sensory data management system. Celery supplies a queue structure based on asynchronous communication in Python. Celery is a distributed simple job-queue but reliable distributed system suitable for processing large message. MongoDB is a NoSQL database that is capable of managing various informal information. In this experiment, we have checked that variety of sensor information can be processed with this system in a IoT environment. To improve the performance for handling a message with sensory data, this system will be deployed in the edge of a cloud infrastructure.
Graph databases have been developed to efficiently store and query graph data composed of vertices and edges to express relationships between objects. Since the query types of graph database show very different characteristics from traditional NoSQL databases, benchmarking tools suitable for graph databases to verify the performance of the graph database are needed. In this paper, we propose an efficient graph database benchmarking system that supports diversity in graph inputs and queries. The proposed system utilizes OrientDB to conduct benchmarking for graph databases. In order to support the diversity of input graphs and query graphs, we use LDBC that is an existing graph data generation tool. We demonstrate the feasibility and effectiveness of the proposed scheme through analysis of benchmarking results. As a result of performance evaluation, it has been shown that the proposed system can generate customizable synthetic graph data, and benchmarking can be performed based on the generated graph data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.