• 제목/요약/키워드: No Fire Zone

검색결과 18건 처리시간 0.022초

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

A Numerical Study on the Smoke Behavior by Solar Radiation through Ceiling Glass in Atrium Fires

  • Jeong, Jin-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권3호
    • /
    • pp.117-128
    • /
    • 2002
  • This paper describes the smoke filling process of a fire field model based on a self-deve-loped SMEP (Smoke Movement Estimating Program) code to the simulation of fire induced flows in the two types of atrium space containing a ceiling heat flux. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy production term. Also it solves the radiation equation using the discrete ordinates method. Compressibility is assumed and the perfect gas law is used. Comparison of the calculated upper-layer average tempera-ture and smoke layer clear height with the zone models has shown reasonable agreement. The zone models used are the CFAST and the NBTC one-room. For atrium fires with ceiling glass the ceiling heat flux by solar heat causes a high smoke temperature near the ceiling. However, it has no effect on the smoke movement such as the smoke layer clear heights that are important in fire safety. In conclusion, the smoke layer clear heights that are important in evacuation activity except the early of a fire were not as sensitive as the smoke layer tem-perature to the nature of ceiling heat flux condition. Thus, a fire sensor in atrium with ceiling glass has to consider these phenomena.

화재를 입은 콘크리트 교각의 손상에 관한 연구 (A Study on the Damage to a Concrete Bridge Pier due to Fire)

  • 윤우현
    • 콘크리트학회지
    • /
    • 제7권2호
    • /
    • pp.117-125
    • /
    • 1995
  • 본 연구에서는 유조차의 추락으로 인해 화재를 입은 콘크리트 교각의 손상 정도에 대하여 조사하였다. 화재에 의한 콘크리트의 조직 변성 및 파손 깊이는 유한요소법으로 계산하여 현장 실측치와 비교분석하였고, 철근의 손상도는 인장시험을 통하여 파악하였다. 유한요소법에 의한 계산에서는 콘크리트의 열 전달 계수 ${\alpha}=2000W/m^2{\cdot}K$ 콘크리트의 초기 온도 $T_0=5^{\circ}C$ 그리고 화재 지속 시간 t=30분으로 고정하였고, 화재 온도 $T_a=500~800^{\circ}C$로 변화시켰다. 계산 결과 콘크리트 조직 변성 깊이는 1.5~4.1cm 그리고 압축 파열 깊이는 8.7~10.1cm로서 각각 실측치인 2~4cm 및 8~10cm와 근접한 결과를 얻었다. 그리고 화재후 철근의 인장강도는 별 손실이 없는 것으로 나타났다.

울산 주상복합건물 현장조사를 통한 화재사례 분석 (Analysis of fires case through on-field survey of residential and commercial building in Ulsan)

  • 조휘제;이병흔;권영진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.84-85
    • /
    • 2021
  • The fire that broke out in a residential and commercial complex in Ulsan in October 2020 was large, but no deaths occurred. For this reason, there was a difference from the previous cases, so it was analyzed through field survey. The fire was expanded to the entire building by aluminum composite panels constructed by external heat method and SMC panels in evacuation safety zones, and fire was expanded to nearby mart due to wind on the day of the fire, and there were many evacuation spaces such as 15th, 28th, and rooftop heliports.

  • PDF

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

제연구역 출입문의 최적 설계를 위한 도어클로저의 기준 산정에 관한 연구 (Study on the Assessment of the Criteria on a Door Closer for the Optimum Design of the Access Door of a Smoke Control Zone)

  • 이재오;최충석
    • 한국화재소방학회논문지
    • /
    • 제27권3호
    • /
    • pp.66-71
    • /
    • 2013
  • 본 연구의 목적은 제연구역 출입문의 최적 설계를 위한 플로어힌지(floor-hinge) 및 도어클로저(door closer)의 기준을 제시하는데 있다. 차압에 대한 개방력은 60 Pa일 때 60.75 N, 40 Pa일 때 40.5 N, 32.5 Pa일 때 32.91 N, 12.5 Pa일 때 12.66 N 등이다. KS F 2806의 기준을 적용한 플로어힌지 및 도어클로저의 개방력은 No.1은 27.5 N, No. 2는 40 N, No. 3는 75 N, No. 4는 100 N, No. 5는 125 N 등이다. 차압과 플로어힌지 및 도어클로저의 개방력을 NFSC 501A의 개방력 제한값과 비교한 결과 기준을 초과하는 것으로 확인되었다. 따라서 NFSC 501A 차압과 방연 풍속을 설계에 반영하는 것뿐만 아니라 개방력도 설계에 반영할 필요가 있다. 제연댐퍼의 종류에 따라 출입문의 플로어힌지 및 도어클로저의 설치 조건은 호칭에 따라 다르다. 저차압용의 경우는 No. 1, No. 2, No. 3의 설치가 가능하며, 일반 차압용의 경우에는 No. 1, No. 2의 설치가 가능하였다.

Investigation on the flexural behavior of an innovative U-shaped steel-concrete composite beam

  • Turetta, Maxime;Odenbreit, Christoph;Khelil, Abdelouahab;Martin, Pierre-Olivier
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.441-452
    • /
    • 2020
  • Within the French CIFRE research project COMINO, an innovative type of composite beam was developed for buildings that need fire resistance with no additional supports in construction stage. The developed solution is composed of a steel U-shaped beam acting as a formwork in construction stage for a reinforced concrete part that provides the fire resistance. In the exploitation stage, the steel and the reinforced concrete are acting together as a composite beam. This paper presents the investigation made on the load bearing capacity of this new developed steel-concrete composite section. A full-scale test has been carried out at the Laboratory of Structural Engineering of the University of Luxembourg. The paper presents the configuration of the specimen, the fabrication process and the obtained test results. The beam behaved compositely and exhibited high ductility and bending resistance. The shear connection in the tension zone was effective. The beam failed by a separation between the slab and the beam at high deformations, excessive shear forces conducted to a failure of the stirrups in this zone. The test results are then compared with good agreement to analytical methods of design based on EN 1994 and design guidelines are given.

Influence of softening curves on the residual fracture toughness of post-fire normal-strength concrete

  • Yu, Kequan;Lu, Zhoudao
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.199-213
    • /
    • 2015
  • The residual fracture toughness of post-fire normal-strength concrete subjected up to $600^{\circ}C$ is considered by the wedge splitting test. The initial fracture toughness $K_I^{ini}$ and the critical fracture toughness $K_I^{un}$ could be calculated experimentally. Their difference is donated as the cohesive fracture toughness $K_I^c$ which is caused by the distribution of cohesive stress on the fracture process zone. A comparative study on determining the residual fracture toughness associated with three bi-linear functions of the cohesive stress distribution, i.e. Peterson's softening curve, CEB-FIP Model 1990 softening curve and Xu's softening curve, using an analytical method is presented. It shows that different softening curves have no significant influence on the fracture toughness. Meanwhile, comparisons between the experimental and the analytical calculated critical fracture toughness values further prove the validation of the double-K fracture model to the post-fire concrete specimens.

고속 측면 충돌 감지 알고리즘의 개발 (Development of Fast Side-impact Sensing Algorithm)

  • 박서욱;김현태
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF

전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구 (A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer)

  • 박서욱;전만철
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.