• Title/Summary/Keyword: Nitrophenol

Search Result 138, Processing Time 0.023 seconds

Decomposition of a Substituted Diphenyl Ether Herbicide(MC-4379) by Some Environmental Factors (환경요인(環境要因)에 의(依)한 치환(置換) Diphenyl Ether계(系) 제초제(除草劑) MC-4379의 분해(分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo;Kim, Hae-Yong
    • Applied Biological Chemistry
    • /
    • v.18 no.1
    • /
    • pp.30-41
    • /
    • 1975
  • A substituted diphenyl ether herbicide(MC-4379) was studied on the decomposition by some environmental factors; sunlight, microorganisms, and the crude enzyme in rice plant extract. All the decomposition products were confirmed by means of TLC, GLC, and IR. The parent compound and the decomposition products were put to the test for the effect on the growth of some plants. The results obtained are summarized as follows: 1. Photolysis Amino-MC-4379, 2,4-dichloro-3'-carboxyl-4'-nitrodiphenyl ether, Nitrofen, 2,4-dichloro-3'-carboxyl-4'-amino-diphenyl ether, amino-Nitrofen, 3-carboxymethyl-4-nitrophenol, p-nitrophenol, p-aminophenol, etc. were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. It was confirmed that the solution-phase photolysis of MC-4379 was accelerated much more by the aid of a photosensitizer benzophenone. 2. Degradation by the crude extract of germinating rice seeds Nitrofen was confirmed as a major degradation product, in addition to a relatively small amount of and unknown compound. Most of the parent compound remained unchanged. 3. Degradation by microorganisms Nitrofen and amino-MC-4379 were confirmed as the major products. in addition to a small amount of an unknown compound. 4. The germinating rice seeds and soybean were grown in the 1,000 ppm emulsions of some chemicals, respectively. The effect on rice plant growth was in the inhibitory order of p-nitrophenol > C-6989> Nitrofen > amino-Nitrofen > MC-4379. The effect on soybean was in the order of Nitrofen > amino-Nitrofen > MC-4379. Two weeds, Amantus blitum and Setaria viridis were grown in the 500 ppm emulsions containing the compounds, respectively. After incubation for 3 days, it was observed that all the shoots had been dead.

  • PDF

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF

Modification of Hepatic Microsomal Cytochrome P450 2E1 Enzyme by Garlic Powder in Rat Hepatocarcinogenesis

  • Park, Kyung-Ae;Choi, Hay-Mie
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.73-79
    • /
    • 1997
  • This study was designed to investigate the effects of dietary garlic powder on cytochrome P450 enzymes and membrane stability in murine hepatocarcinogenesis initiated by diethylnitrosamine (DEN). Male Sprague-Dawley rats received a single intraperitoneal injection of DEN (200 mg/kg body wt) dissolved in saline. After 2 weeks on a basal diet, animals were fed diets containing 0. 0.5. 2.0. or 5.0% garlic powder for 6 weeks, and were subjected to two-thirds partial hepatectomy. The areas of placental glutathione S-transferase (GST-P) positive foci were inhibited in rats fed with garlic diets. GST-P is the most effective marker for DEN-initiated lesions. Hepatic microsomal lipid peroxidation was significantly decreased in rats fed with 2.0 and 5.0% garlic powder diets compared with that observed in the control animals and hepatic microsomal glucose 6-phosphatase (G6Pase) activity was found to increase significantly in rats fed 0.5 and 2.0% garlic powder diets. Thus as little as 0.5% garlic powder has a positive effect on the stability of hepatic microsomal membranes. p-Nitrophenol hydroxylase (PNPH) activity and the level of cytochrome P450 2E1 protein in the hepatic microsomes from rats fed diets containing 2.0 and 5.0% garlic powder were much lower than those of control microsomes. Rats fed 5.0% garlic powder diets exhibited the lowest P450 2E1 activity and protein levels among groups. Pentoxyresorufin O-dealkylase activity and immunoblot (cytochrome P450 2B1) analyses were not different between groups. However, the levels of cytochrome P450 1A1/2 protein in rats fed 0.5 and 2.0% garlic powder were significantly induced compared to controls. These results suggest that 2.0% garlic powder is effective in inhibiting the areas of GST-P positive foci, modulating certain isoforms of cytochrome P450 enzymes and stabilizing the hepatic microsomal membrane. Thus, the selective modification of cytochrome P450 enzymes and membrane stability by dietary garlic powder may influence areas of GST-P positive foci and chemoprevention of post-initiation of rat hepatocarcinogenesis.

  • PDF

The Pathway and Characteristics for Decomposition of Fenitrothion by Zerovalent Iron (ZVI) (영가철에 의한 Fenitrothion의 분해 경로 및 특성)

  • Lee, Dong-Yoon;Moon, Byung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.157-161
    • /
    • 2011
  • This study investigated decomposition the pathway and characteristics of fenitrothion, which is applied on the golf course for pesticide, by ZVI in batch reactor. The removal efficiencies of the pure fenitrothion and the commercial fenitrothion in Smithion by ZVI were compared. The fenitrothion was converted to 3-Methyl-4-nitrophenol and 4-Amino-m-cresol by ZVI. The fenitrothion decomposition rate by ZVI could be expressed by the first order reaction. As increasing the ZVI dosages, the first order rate constants and removal efficiencies increased. The surface area normalized rate constants for the pure fenitrothion and the commercial fenitrothion were 0.0398 and 0.1312 ($L/m^2{\cdot}hr$), respectively. The decomposition of the commercial fenitrothion in Smithion was faster than that of the pure fenitrothion by ZVI, the surfactant in Smithion lead to enhances solubility of fenitrothion and disperse ZVI.

Genetic and Phenotypic Diversity of Parathion-Degrading Bacteria Isolated from Rice Paddy Soils

  • Choi, Min-Kyeong;Kim, Kyung-Duk;Ahn, Kyong-Mok;Shin, Dong-Hyun;Hwang, Jae-Hong;Seong, Chi-Nam;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1679-1687
    • /
    • 2009
  • Three parathion-degrading bacteria and eight pairs of bacteria showing syntrophic metabolism of parathion were isolated from rice field soils, and their genetic and phenotypic characteristics were investigated. The three isolates and eight syntrophic pairs were able to utilize parathion as a sole source of carbon and energy, producing p-nitrophenol as the intermediate metabolite during the complete degradation of parathion. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Burkholderia, Arthrobacter, Pseudomonas, Variovorax, and Ensifer. The chromosomal DNA patterns of the isolates obtained by polymerasechain-reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences were distinct from one another. Ten of the isolates had plasmids. All of the isolates and syntrophic pairs were able to degrade parathion-related compounds such as EPN, p-nitrophenol, fenitrothion, and methyl parathion. When analyzed with PCR amplification and dot-blotting hybridization using various primers targeted for the organophosphorus pesticide hydrolase genes of previously reported isolates, most of the isolates did not show positive signals, suggesting that their parathion hydrolase genes had no significant sequence homology with those of the previously reported organosphophate pesticide-degrading isolates.

Genetic and Phenotypic Diversity of Fenitrothion-Degrading Bacteria Isolated from Soils

  • Kim, Kyung-Duk;Ahn, Jae-Hyung;Kim, Tae-Sung;Park, Seong-Chan;Seong, Chi-Nam;Song, Hong-Gyu;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Twenty-seven fenitrothion-degrading bacteria were isolated from different soils, and their genetic and phenotypic characteristics were investigated. Analysis of the 16S rDNA sequence showed that the isolates were related to members of the genera Burkholderia, Pseudomonas, Sphingomonas, Cupriavidus, Corynebacterium, and Arthrobacter. Among the 27 isolates, 12 different chromosomal DNA fingerprinting patterns were obtained by polymerase chain reaction(PCR) amplification of repetitive extra genic palindromic(REP) sequences. The isolates were able to utilize fenitrothion as a sole source of carbon and energy, producing 3-methyl-4-nitrophenol as the intermediate metabolite during the complete degradation of fenitrothion. Twenty-two of 27 isolates were able to degrade parathion, methyl-parathion, and p-nitrophenol but only strain BS2 could degrade EPN(O-ethyl-O-p-nitrophenyl phenylphosphorothioate) as a sole source of carbon and energy for growth. Eighteen of the 27 isolates had plasmids. When analyzed with PCR amplification and dot-blotting hybridization using various specific primers targeted to the organophosphorus pesticide hydrolase genes of the previously reported isolates, none of the isolates showed positive signals, suggesting that the corresponding genes of our isolates had no significant sequence homology with those of the previously isolated organophosphate pesticide-degrading bacteria.

Adsorption-Desorption Modeling of Pollutants on Granular Activated Carbon (오염물질에 대한 입상 활성탄의 흡·탈착 모델링)

  • Wang, Chang Keun;Weber, Walter J. Jr.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.279-285
    • /
    • 1993
  • It is important to understand the interrelationship between adsorption, equilibrium and mass transport in efficient design and operation of the granular activated carbon(GAC) adsorption systems. In this study, the micro-diameter-depth adsorption system(MIDDAS) technique was developed to estimate equilibrium and mass transport parameters, which were utilized to simulate adsorption and mass transport phenomena dynamically and mathematically. The homogeneous surface diffusion model(HSDM) utilizing the estimated equilibrium and mass transport parameters including the film transfer coefficients and surface diffusivities from the MIDDAS technique, successfully predicted competitive adsorption, desorption and chromatographic displacement effects. In the binary solute system of p-chlorophenol(PCP) and p-nitrophenol(PNP), PCP was displaced by PNP and the HSDM could predict successfully. While the HSDM described the desorption breakthrough curves for PCP, PNP and PTS well when complete reversible adsorption was assumed, the desorption breakthrough curves for DBS could be predicted after subsequent incorporation of the degree of irreversibility into the model simulations.

  • PDF

Characteristics of the Parathion Degrading Pseudomonas rhodesiae H5. (파라치온 분해 세균 Pseudomonas rhodesiae H5의 특성)

  • 윤남경;박경량
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.582-588
    • /
    • 2004
  • Eighty one bacterial strains of parathion degrading bacteria were isolated from soil samples that were contaminated with pesticide in Daejeon area. Among them, one bacterial strain was finally selected in media containing parathion as the sole source of carbon and energy, and this strain was identified as Pseudomonas rhodesiae H5 through physiological and biochemical tests, and analysis of its 16S rRNA sequence. Pseudomonas rhodesiae H5 was able to utilize various carbohydrates but did not utilize sorbose as sole carbon source. Pseudomonas rhodesiae H5 was resistance to ampicillin, spectinomycin, and mitomycin C but sensitive to kanamycin and chloramphenicol. And this strain showed high resistance up to several milligrams of heavy metals such as $BaCl_2$, LiCl, and $MnSO_4$. Optimal growth condition for temperature and pH of P. rhodesiae H5 was 3$0^{\circ}C$, and pH 7.0, respectively. It can be presumed that P. rhodesiae H5 hydrolyzed an organophosphate bond of parathion, forming p-nitrophenol, and then metabolized via ortho-ring cleavage mechanism.

Protective Effect of Whagan-Jeon (huaganjian) on Acetaminophen-induced Hepatotoxicity (화간전이 아세트아미노펜에 의한 간독성에 미치는 영향)

  • 박철수;김기열;이채중;안중환;김종대;남경수
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.33-42
    • /
    • 2002
  • Objective : This study was performed to investigate the activity of Whagan-Jeon (huaganjian) in protection against acetaminophen (AAP)-induced hepatotoxicity and the possible mechanisms in vivo. Methods : The following were performed : Serum ALT, depletion of hepatic glutathione (GSH) levels, the microsomal p. nitrophenol hydroxylation activity, microsomal aniline hydroxylation activity, genomic DNA fragmentation and its reversal, hepatic glutathione-S-transferase (GST) activity, and hepatic NAD(P)H:quinone oxidoreductase (QR) activity Results : Whagan-Jeon (huaganjian) protected against AAP-inducedhepatotoxicity by the increase of GSH levels, inhibition of P450 2E1-specific metabolic activities, attenuation of hepatic DNA damage, and induction of GST and QR activities in vivo. Conclusions : In conclusion, Whagan-Jeon (huaganjian) was effective in protection against AAP-induced hepatoxicity.

  • PDF