• Title/Summary/Keyword: Nitrogen reduction reactions

Search Result 30, Processing Time 0.027 seconds

Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction (산소환원반응 촉매용 질소 도핑된 탄소나노섬유의 제조)

  • An, Geon-Hyoung;Lee, Eun-Hwan;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.420-425
    • /
    • 2016
  • N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential ($E_{1/2}$) of 0.43 V, kinetic limiting current density of $6.2mAcm^{-2}$, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.

First-Principles Analysis of Nitrogen Reduction Reactions on Ruthenium Catalyst Surfaces for Electrochemical Ammonia Synthesis (전기화학적 암모니아 합성을 위한 루테늄 촉매 표면에서의 질소 환원반응 메커니즘 해석의 위한 제1원리 모델링)

  • Mihyeon Cho;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.598-603
    • /
    • 2023
  • Electrochemical ammonia production using catalysts offers a promising alternative to the conventional Haber-Bosch process, allowing for ambient temperature and pressure conditions, environmentally friendly operations, and high-purity ammonia production. In this study, we focus on the nitrogen reduction reactions occurring on the surfaces of ruthenium catalysts, employing first-principles calculations. By modeling reaction pathways for nitrogen reduction on the (0001) and (1000) surfaces of ruthenium, we optimized the reaction structures and predicted favorable pathways for each step. We found that the adsorption configuration of N2 on each surface significantly influenced subsequent reaction activities. On the (0001) surface of ruthenium, the end-on configuration, where nitrogen molecules adsorb perpendicularly to the surface, exhibited the most favorable N2 adsorption energy. Similarly, on the (1000) surface, the end-on configuration showed the most stable adsorption energy values. Subsequently, through optimized hydrogen adsorption in both distal and alternating configurations, we theoretically elucidated the complete reaction pathways required for the final desorption of NH3.

The Investigation of Influence of Chlorinated Hydrocarbons on $NO_x$ Formation from Methane Flames (메탄 화염에서 염화 탄화수소 화합물이 질소산화물 생성에 미치는 영향 조사)

  • Jang, Kyoung;Jang, Bong-Choon;Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.10-16
    • /
    • 2008
  • Numerical simulations of freely propagating premixed flames burning mixtures of methane and chlorinated hydrocarbons in fuel are performed at atmospheric pressure in order to understand the effect of chlorinated hydrocarbons on the formation of nitrogen oxide. A detailed chemical reaction mechanism is used, the adopted scheme involving 89 gas-phase species and 1017 elementary forward reaction steps. Chlorine atoms available from chlorinated hydrocarbons inhibit the formation of nitrogen oxides by lowering the concentration of radical species. The reduction of NO emission index calculated with thermal or prompt NO mechanism is not linear and is probably related to the saturation effect as $CH_3Cl$ addition is increased, In the formation or consumption of nitrogen oxide, the $NO_2$ and NOCl reactions play an important role in lean flames while the HNO reactions do in rich flames. The molar ratio of Cl to H in fuel has an effect on the magnitude of NO emission index.

  • PDF

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction (산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조)

  • Lee, Young-geun;An, Geon-hyeong;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition (상온 상압 조건에서 전기화학적 질소환원반응을 통한 암모니아 생산 연구 동향)

  • Lee, Dong-Kyu;Sim, Uk
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally, ammonia has been produced through the Haber-Bosch process, in which atmospheric nitrogen combines with hydrogen at high temperature ($350-550^{\circ}C$) and high pressure (150-300 bar). This process consumes 1-2% of current global energy production and relies on fossil fuels as an energy source. Reducing the energy input required for this process will reduce $CO_2$ emissions and the corresponding environmental impact. For this reason, developing electrochemical ammonia-production methods under ambient temperature and pressure conditions should significantly reduce the energy input required to produce ammonia. In this review, we introduce the electrochemical nitrogen reduction reaction at ambient condition. Numerical studies on the electrochemical nitrogen reduction mechanism have been carried out through the computation of density function theory. Electrodes such as nanowires and porous electrodes have been also actively studied for further participation in electrochemical reactions.

Bidirectional pulse generator for removal of flue gas (배기가스 처리용 양방향 펄스 전원)

  • 박정호;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.233-236
    • /
    • 1997
  • An investigation has been made of the various plasma chemistry reactions that occur in the corona discharge of an electrostatic precipitator operating in a typical flue gas. As the results of investigation, sulphur dioxide is removed principally by reactions with OH radicals to produce sulphuric acid, while nitrogen oxides are removed principally by reduction via the N radical to molecular nitrogen. If electrostatic precipitator\ulcorner used for flue gases are operated with positive voltages instead of negative dc voltages, there are significant reductions in the emission of the undesirable gases SO$_2$, NO, and NO$_2$. Thus, in this paper we design the bidirectional pulse generator for removal of flue gas, where the pulse width is more than 50[nsec] and the maximum output voltage is more than 100[kVl.

  • PDF

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.

A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface (범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구)

  • Minji Kim;Sangheon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.604-610
    • /
    • 2023
  • The nitrogen reduction reaction (NRR), which produces NH3 by reducing N2 under ambient conditions, is attracting attention as a promising technology that can reduce energy consumption in industrial processes. We investigated the adsorption behaviors at various active sites on the Ni (100) surface, which is widely used among catalytic metal surfaces capable of adsorbing and activating N2, based on density-functional theory calculations. We also investigated two N2 adsorption structures, so-called end-on and side-on structures. We find that for the end-on case, N2 is adsorbed on a top site, and the reaction proceeded in a distal pathway, while for the side-on case, N2 is adsorbed on a bridge site, and the reaction proceeded with enzymatic pathway. Finally, this study provides insight into the adsorption of metal catalyst surfaces for the NRR reactions based on the calculated Gibbs free energy profiles of the thermodynamically most favorable pathways.

A Study on the Liquid Phase Sintering of Tungsten-Nickel-Manganese alloy (텅스텐-니켈-망간 합금의 액상소결에 관한연구)

  • Hong, Mun-Hui;Lee, Seong;Roh, Jun-Ung;Paik, Un-Hyeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1995.11a
    • /
    • pp.25-25
    • /
    • 1995
  • Liquid phase sintering of 90W-6Ni-4Mn alloy has been investigated as functions of sintering atmosphere, heating rate, and reduction temperature. The present work accounts for the thermodynamic oxidatiodreduction reactions of constituent powders of W, Ni and Mn. By discounting these reactions, the previous investigations would obtain only the alloy with large pores and the lowered relative sintered density, by the liquid phase sintering under a dry hydrogen atmosphere. the sintering cycle consisted of a rapid heating to reduction temperatures under high purity nitrogen atmosphere, and holding for 4 hours and sintering at $1260^{\circ}C$ for 1 hour under a dry hydrogen gas. The relative density of the sintered alloy increased with increasing heating rate. As the reduction temperature increased, the relative density increased to the lm theotical density at the duction temture above $1150^{\circ}C$. The mimsturcatre of sintered alloys has been analysed by a scanning election microscope. The sintered density was compared with those obtained from the other investigators. It was found that the reduction $1150^{\circ}C$ results in the lowered densification of 90W-6Ni-4Mn alloy. This is caused by the fact that reducing reactions of W and Ni oxides contained in W an Ni powders concomitantly leads to oxidizing reaction of Mn powder the oxidized Mn is hardly reduced at sintering temperature and thereby remains large pores in the alloy. It is concluded that the W-Ni-Mn alloy with full density can be obtained by the precise control of atmosphere, heating rate, and sintering temperature.

  • PDF

Effect of NH3 Uniformity Index on SCR System According to Urea Spray Characteristics (요소수 분무특성이 SCR시스템 내 분무균일도에 미치는 영향)

  • Kim, Se Hun;Ko, Jin Seok;Ko, Jae Yu;Cho, Young Jun;Lee, Dong Ryu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.178-184
    • /
    • 2019
  • Diesel engines have the advantages of higher thermal efficiency and lower CO2 emissions than gasoline engines, but have the disadvantages that particulate matter (PM) and nitrogen oxides (NOx) emissions are greater than those of gasoline engines. In particular, nitrogen oxides (NOx) emitted from diesel engines generates secondary ultrafine dust (PM2.5) through photochemical reactions in the atmosphere, which is fatal to humans. In order to reduce nitrogen oxides (NOx), pre-treatment systems such as EGR, post-treatment systems such as LNT and Urea SCR have been actively studied. The Urea SCR consists of an injection device injecting urea agent and a catalytic device for reducing nitrogen oxides (NOx). The nitrogen oxide (NOx) reduction performance varies greatly depending on the urea uniformity in the exhaust pipe. In this study, spray characteristics according to the spray hole structure were confirmed, and the influence of spray uniformity on spray characteristics was studied through engine evaluation.