Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.6.420

Synthesis of Nitrogen-doped Carbon Nanofibers for Oxygen Reduction Reaction  

An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Lee, Eun-Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.6, 2016 , pp. 420-425 More about this Journal
Abstract
N-doped carbon nanofibers as catalysts for oxygen-reduction reactions are synthesized using electrospinning and carbonization. Their morphologies, structures, chemical bonding states, and electrochemical performance are characterized. The optimized N-doped carbon nanofibers exhibit graphitization of carbon nanofibers and an increased nitrogen doping as well as a uniform network structure. In particular, the optimized N-doped carbon nanofibers show outstanding catalytic activity for oxygen-reduction reactions, such as a half-wave potential ($E_{1/2}$) of 0.43 V, kinetic limiting current density of $6.2mAcm^{-2}$, electron reduction pathways (n = 3.1), and excellent long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 13 mV. The improvement in the electrochemical performance results from the synergistic effect of the graphitization of carbon nanofibers and the increased amount of nitrogen doping.
Keywords
Oxygen reduction reaction; Carbon nanofiber; Nitrogen doping; Graphitization;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 M. Lefevre, E. Proietti, F. Jaouen and J.-P. Dodelet: Science, 324 (2009) 71.   DOI
2 G. H. An and H. J. Ahn: Kor. J. Mater. Res., 22 (2012) 421.   DOI
3 J. Snyder, T. Fujita, M. W. Chen and J. Erlebacher: Nat. Mater., 9 (2010) 904.   DOI
4 M. K. Jeon, C. H. Lee, G. I. Park and K. H. Kang: J. Power Sources, 216 (2012) 400.   DOI
5 K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai: Science, 323 (2009) 760.   DOI
6 G. H. An and H.-J. Ahn: J. Electroanal. Chem., 707 (2013) 74.   DOI
7 G. H. An, E.-H. Lee and H.-J. Ahn: J. Alloys Compd., 682 (2016) 746.   DOI
8 B. Wang: J. Power Sources, 152 (2005) 1.   DOI
9 H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, H. Song, Y. Zhong and B. Zhang: Sci. Rep., 3 (2013) 1765.   DOI
10 Y. L. Liu, X. Y. Xu, P. C. Sun and T. H. Chen: Int. J. Hydrogen Energy, 40 (2015) 4531.   DOI
11 G. H. An and H. J. Ahn: Carbon, 65 (2013) 87.   DOI
12 G. H. An and H. J. Ahn: Ceram. Int., 38 (2012) 3197.   DOI
13 G. H. An, J. I. Sohn and H. J. Ahn: J. Mater. Chem. A Mater. Energy Sustain., 4 (2016) 2049.   DOI
14 G. H. An, B. R. Koo and H. J. Ahn: Phys. Chem. Chem. Phys., 18 (2016) 6587.   DOI
15 G. H. An and H. J. Ahn: Kor. J. Mater. Res., 23 (2013) 143.   DOI
16 D. Y. Sin, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 22 (2015) 350.   DOI
17 D. Y. Sin, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 25 (2015) 113.   DOI
18 H. L. An, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 26 (2016) 250.   DOI
19 B. R. Koo, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 108.   DOI