• Title/Summary/Keyword: Nitric oxide synthase

Search Result 1,534, Processing Time 0.032 seconds

Phenethyl Isothiocyanate Inhibits Ovalbumin-induced Inducible Nitric Oxide Synthase Expression (Ovalbumin에 의해서 유도된 inducible nitric oxide synthase 발현에 대한 phenethyl isothiocyanate의 억제효과)

  • Shin, Hwa-Jeong;Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.759-762
    • /
    • 2012
  • Egg allergies have been reported as one of the most prevalent food hypersensitivities in the pediatric population. One of the major egg allergens is ovalbumin (OVA), which is the major protein in the egg whites. Phenethyl isothiocyanate (PEIC) from cruciferous vegetables has an effect on anti-inflammatory therapy. In the present report, we show that PEIC inhibits the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation induced by OVA. PEIC also inhibits the OVA-induced inducible nitric oxide synthase (iNOS) expression and nitrite production. However, PEIC did not suppress the cyclooxygenase-2 (COX-2) expression induced by OVA. These results suggest that PEIC has the specific mechanism for anti-inflammatory responses and efficient anti-allergic activities.

Effect of Immunosuppressants on Lipopolysaccharide-Induced Changes of Nitric Oxide Synthase Activity in Liver and Brain of Mice (면역억제제가 Lipopolysaccharide에 의한 생쥐의 간 및 뇌조직의 Nitric Oxide Synthase 활성도의 변화에 미치는 영향)

  • Min, Byung-Woo;Han, Hyng-Soo;Park, Jung-Sook;Kim, Choong-Young
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.233-239
    • /
    • 1995
  • To verify the effect of immunosuppressants on the endotoxin-induced increase in iNOS activity, the action of immunosuppressants, dexamethasone (1.5 mg/kg), azathioprine (5 mg/kg/day) and cyclosporine (10 mg/kg), were evaluated in mice pretreated with LPS. The intraperitoneal injection of lipopolysaccharide (10 mg/kg) increased the nitric oxide synthase (NOS) activity in the brain and liver to maximum at 1 and 3 hours, respectively. The increase in NOS activity was blocked by the treatment with NOS inhibitor, LNAME(300 mg/kg) and aminoguanidine(100 mg/kg); a protein inhibitor, cycloheximide (10 mg/kg); and a transcription inhibitor of inducible NOS(iNOS), dexamethasone(1.5 mg/kg). Immunosuppressants, azathioprine (5 mg/kg) and cyclosporine (10 mg/kg), effectively blocked the increase in NOS activity. These results suggest that iNOS expression plays an important role in LPS-induced the increase in NOS activity and that immunosuppressants can be used as candidate for therapeutic agents in endotoxemia.

  • PDF

Experimental Intervention to Reverse Inhibition of Nitric Oxide Production by Cyclosporin A in Rat Aortic Smooth Muscle Cells (혈관평활근세포에서 Cyclosporin A에 의한 Nitric Oxide 생성억제를 길항하는 실험적 중재법)

  • Kim, In-Kyeom
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.211-219
    • /
    • 1996
  • The inhibitory effect of cyclosporin A (CsA) on nitric oxide production is not related to the immunosuppressive action of the drug, but to the renal toxicity and arterial hyper-tension. In this study the experimental interventions to reverse the inhibition of nitric oxide production by cyclosporin A in rat aortic smooth muscle cells were examined. CsA inhibited the accumulation of nitrite, the stable end product of nitric oxide, in culture media in a concentration $(0.1{\sim}100{\mu}g/ml)-dependent$ manner. The inhibitory effect of CsA on nitrite accumulation were not antagonized by arginine (10 mM), a substrate of nitric oxide synthase, nor by calcium ionophore A23187 $(7{\mu}M)$. Forskolin, an activator of adenylate cyclase, which enhanced iNOS induction at transcriptional level, completely reversed the inhibitory action of CsA on nitrite accumulation. However, PMA (2 nM) and PDB (50 nM), PKC activators, increased the inhibitory action of CsA on nitrite accumulalion. From these results, it is suggested that cyclic AMP-elevating agents may be candidates of therapeutic agents in prevention and treatment of renal toxicity and arterial hypertension induced by CsA. Among conventional antihypertensive drugs, calcium channel blockers and ${\alpha}-blockers$ are preferred to ${\beta}-blockers$.

  • PDF

Dexmedetomidine inhibits vasoconstriction via activation of endothelial nitric oxide synthase

  • Nong, Lidan;Ma, Jue;Zhang, Guangyan;Deng, Chunyu;Mao, Songsong;Li, Haifeng;Cui, Jianxiu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.441-447
    • /
    • 2016
  • Despite the complex vascular effects of dexmedetomidine (DEX), its actions on human pulmonary resistance arteries remain unknown. The present study tested the hypothesis that DEX inhibits vascular tension in human pulmonary arteries through the endothelial nitric oxide synthase (eNOS) mediated production of nitric oxide (NO). Pulmonary artery segments were obtained from 62 patients who underwent lung resection. The direct effects of DEX on human pulmonary artery tension and changes in vascular tension were determined by isometric force measurements recorded on a myograph. Arterial contractions caused by increasing concentrations of serotonin with DEX in the presence or absence of L-NAME (endothelial nitric oxide synthase inhibitor), yohimbine (${\alpha}_2$-adrenoceptor antagonist) and indomethacin (cyclooxygenase inhibitor) as antagonists were also measured. DEX had no effect on endothelium-intact pulmonary arteries, whereas at concentrations of $10^{-8}{\sim}10^{-6}mol/L$, it elicited contractions in endothelium-denuded pulmonary arteries. DEX (0.3, 1, or $3{\times}10^{-9}mmol/L$) inhibited serotonin-induced contraction in arteries with intact endothelium in a dose-dependent manner. L-NAME and yohimbine abolished DEX-induced inhibition, whereas indomethacin had no effect. No inhibitory effect was observed in endothelium-denuded pulmonary arteries. DEX-induced inhibition of vasoconstriction in human pulmonary arteries is mediated by NO production induced by the activation of endothelial ${\alpha}_2$-adrenoceptor and nitric oxide synthase.

Tat-Mediated p66shc Transduction Decreased Phosphorylation of Endothelial Nitric Oxide Synthase in Endothelial Cells

  • Lee, Sang-Ki;Lee, Ji-Young;Joo, Hee-Kyoung;Cho, Eun-Jung;Kim, Cuk-Seong;Lee, Sang-Do;Park, Jin-Bong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.3
    • /
    • pp.199-204
    • /
    • 2012
  • We evaluated the role of Tat-mediated p66shc transduction on the activation of endothelial nitric oxide synthase in cultured mouse endothelial cells. To construct the Tat-p66shc fusion protein, human full length p66shc cDNA was fused with the Tat-protein transduction domain. Transduction of TAT-p66shc showed a concentration- and time-dependent manner in endothelial cells. Tat-mediated p66shc transduction showed increased hydrogen peroxide and superoxide production, compared with Tat-p66shc (S/A), serine 36 residue mutant of p66shc. Tat-mediated p66shc transduction decreased endothelial nitric oxide synthase phosphorylation in endothelial cells. Furthermore, Tat-mediated p66shc transduction augmented TNF-${\alpha}$-induced p38 MAPK phosphorylation in endothelial cells. These results suggest that Tat-mediated p66shc transduction efficiently inhibited endothelial nitric oxide synthase phosphorylation in endothelial cells.

Inhibitory Effect of Galangin from Alpinia officinarum on Lipopolysaccharide-induced Nitric Oxide Synthesis in RAW 264.7 macrophages (고량강으로부터 분리된 galangin의 RAW 264.7 세포주에서 LPS로 유도된 nitric oxide 생성 저해활성)

  • Lee, Hwa Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.4
    • /
    • pp.511-515
    • /
    • 2014
  • In a screen for plant-derived inhibitors of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells, a flavonol isolated from the chloroform extract of Alpinia officinarum was isolated. The structure of the flavonol was found to be 3,5,7-trihydroxy-2-phenylchromen-4-one (galangin, GLG) by using spectroscopy. GLG exhibited an inhibitory effect ($IC_{50}$ value: $26.8{\mu}M$) on NO production in LPS-stimulated RAW 264.7 murine macrophage cells. Moreover, GLG suppressed expressions of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner.

Purification of Nitric Oxide Synthase from Bovine Pancreas

  • Nam, Suk-Woo;Seo, Dong-Wan;Lee, Young-Jin;Sung, Dae-Seok;Han, Jung-Whan;Lee, Hyang-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.184-184
    • /
    • 1996
  • Nitric Oxide Synthase(NO synthase: EC.1.14.13.39)는 생체내에서 L-arginine을 기질로 하여 nitric oxide(NO)와 L-citrulline의 생성을 매개하는 효소로서 뇌, 간장, 신장, 체장등 대부분의 주요장기와 근육세포, 신경세포 등 거의 모든 조직에 분포하고 있다. NO synthase에 의해 생성되는 NO는 혈관이완작용, 신경전달 물질로서의 작용, 면역 담당세포에서의 세포 독작용 등 많은 생리현상에 중요한 역할을 하는 것으로 알려져 있다. 특히 체장에서는 췌외분비 기능의 항진에 있어 세포내 cGMP level의 변동이 NO와 연관된다는 사실에 주목하고 있으며 본연구실에서도 이에 관한 연구가 진행중이다. 따라서 본 연구에서는 소 췌조직의 100,000$\times$g cytosol을 효소원으로 하여 다음과 같이 NO synthase의 분리, 정제를 시행하였다. Ammonium sulfate로 30%(176g solid ammonium sulfate/$\ell$) 포화, 침전 후 2',5'-ADP agarose 및 calmodulin-agarose affinity chromatography를 연속적으로 시행하여 NO synthase를 분리하였으며 electrophoresis상에서 약 160kd의 분자량을 나타내었다.

  • PDF

Nitric oxide production and inducible nitric oxide synthase expression induced by Porphyromonas gingivalis lipopolysaccharide (Porphyromonas gingivalis의 세균내독소가 RAW264.7세포에서의 nitric oxide의 생성과 inducible nitric oxide synthase의 발현에 미치는 영향 및 기전)

  • Paek, Eun-Young;Choi, Eun-Young;Choi, Jeom-II;Lee, Ju-Yun;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.1081-1095
    • /
    • 2005
  • 본 연구는 치주질환 주요 병인균주 중의 하나인 Porphyromonas gingivalis의 세균내독소가 마우스 대식 세포주인 RAW264.7 세포에서의 nitric oxide의 생성과 iNOS의 발현에 미치는 영향을 분석하고 그 기전을 규명하기 위해 수행되었다. Butanol추출법과 phenol-water법에 의해 P. gingivalis 381로부터 세균내독소를 추출하였으며, NO의 생성은 배양 상층액 내의 nitrite 농도를 측정하여 결정하였다. 또한, iNOS의 western blot 분석과 reverse transcription (RT)-PCR 산물의 분석을 수행하였다. P. gingivalis의 세균내독소는 부가적인 자극이 없는 상태에서도 iNOS의 발현과 NO 생성을 유발하였으며, NF- ${\kappa}B$, microtubule polymerization, protein tyrosine kinase, 그리고 protein kinase C 등이 P. gingivalis 세균내독소에 의한 NO 생성에 간여하는 것으로 여겨진다. 또한, P. gingivalis 세균내독소에 의한 NO 생성에는 L-arginine이 요구되었다. P. gingivalis 세균내독소에 의한 NO 생성은 염증성 치주질환의 발병과 진행에 있어 중요한 역할을 하는 것으로 여겨진다.

Parthenolide Inhibits Ovalbumin-Induced cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression

  • Youn, Hyung-Sun
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.319-323
    • /
    • 2012
  • In recent years, egg allergy has been raised as the most prevalent food hypersensitivity in the pediatric population. One of the major egg allergens is ovalbumin (OVA) which is the major protein in egg white, comprising 54% of its total protein content. Parthenolide isolated from Tanacetum partheniumb has been used to treat many chronic diseases for many years. In the present report, we present biochemical evidence that parthenolide inhibits the nuclear factor-${\kappa}B$ (NF-${\kappa}B$) activation induced by OVA. Parthenolide also inhibits OVA-induced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression. These data suggest new approaches for the efficient alleviation of the allergic symptoms.